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PRELIMINARY CONCLUSIONS OF 2D MODELING

Delamination is more likely to create 50-100km scale drips than viscous RT instability when
proper (visco-elasto-plastic) rheology is taken into acount.
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WHAT'S NEXT

With the parameters deduced from the 2D thermo-mecanical study it is now possible to use

_1?13 e v - ™ .. ik our 3D version of FLAC (SNAC) to make more realistic model of the uplift of the Sierra that
= = = = = = ! will take into account the lateral disruption of the eclogite body as well as the strike slip
log10(eff. viscosity) component in the Walker lane belt.
— The thermo-mechanical study also shows that bellow 70 km the model behaves as viscous.
19 25 This will allow us to use more efficient numerical technic (e.g. eularian FEM like Citcom) in

the mantle bellow that depth.




