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T he Sumatr a-A ndaman ear thquake of December  26, 2004 is the fir st giant ear thquake to occur  since the advent of 
moder n space-based geodesy and br oadband seismology and ther efor e pr ovides an unpr ecedented oppor tunity to 
investigate the char acter istics of one of these most dr eadful and r ar e events. W e deter mine co-seismic and post-seismic 
defor mation over  the fir st month following the main shock using a var iety of geodetic data. T hese include gr ound 
displacements fr om near -field G lobal Positioning System (G PS) sur veys in nor thwester n Sumatr a  (Subar ya et al, 2005) 
and in-situ paleogeodetic and r emotely sensed obser vations of the ver tical motion of cor al r eefs (M eltzner  et al, 2005),  
campaign data  and continuous G PS measur ements fr om T hailand and M alaysia (V igny et al, 2005). Our  co-seismic 
model is constr ained fr om co-seismic displacement der ived fr om daily solutions at 34 cG PS stations. I t implies that 
ear thquake r uptur ed the Sunda subduction megathr ust over  a distance of about 1300 km and a width of less than 150 
km r eleasing a total moment of 6.7-7.0 1022 Nm, equivalent to magnitude M w   9.15. T his moment is slightly in excess of 
the 6.2 1022 Nm moment r eleased over  the fir st 500s, as estimated fr om the inver sion of seismic r ecor ds (M odel I I I  in 
A mmon et al, 2005). W e also find that the highly var iable latitudinal distr ibution of r eleased moment der ived fr om the 
two models compar e r emar kably well. T his patter n is also found consistent with the 500s long sour ce time function and 
r uptur e velocity der ived fr om T  waves r ecor ded in the I ndian Ocean (G uilber t et al, 2005). F inally, numer ical simulation 
of the tsunami assuming this co-seismic model ar e found consistent with altimetr ic satellite measur ements of the tsunami 
by J A SON and T OPE X , as well as with the ar r ival times of the tsunami as indicated by tide gage r ecor ds at a number  of 
sites bor der ing the I ndian Ocean and A ndaman Sea. W e ther efor e find no need for  slow slip or  delayed slip as pr oposed 
in some ear ly studies (B ilham et al, 2005;  L ay et al, 2005). H owever , the geodetic data postdating the main shock by up to 
40 days, r equir e that slip must have continued on the plate inter face after  the 500s long seismic r uptur e.  T he 
cor r esponding additional geodetic moment is about 1.5 1022 Nm, r epr esenting about 20%  of the co-seismic moment 
r elease. C ompar ison with the moment r eleased by after shocks, which amounts to only 1%  over  the same per iod, shows 
that this defor mation was mostly aseismic. C onstr aints on the depth distr ibution of after slip ar e loose, but it seems that it 
must have occur r ed at depths less than about 50km, pr obably both updip and downdip of the seismically r uptur ed ar ea. 
T ime evolution of after slip is consistent with r ate-str engthening fr ictional after slip. T he pr opor tion of aseismic slip is 
lar ger  to the nor th, possibly due to the effect of the thick  sediment cover  enter ing the tr ench.

T hese data shed some light on the physical parameters controlling the mode of slip along the plate interface. T he ruptured area seems to 

coincide with the portion of the plate interface shallower than about 40km that was locked before the earthquake, as indicated from the 

previous background seismicity.  T he long term slip along the L F Z must be the result of accumulated seismic events with different lateral 

extent, but possibly characteristic slip and, to some degree, of aseismic slip. T he average recurrence interval of giant earthquake along 

this portion of the I ndonesia-Andaman subduction zone could be as low as 240yr, but a more plausible estimate would be 600 to 700yr.  

Given the >80Ma age of the subducting plate and the <4cm/yr of convergence rate, the Aceh-Andaman earthquake is at odd with the 

concept that the magnitude of subduction earthquakes increases linearly with convergence rate and decreases linearly with subducting 

plate age (R uff and K anamori, 1980;  kanamori, 1983). Neither does it conform to the idea that trench-perpendicular extension, as occurs 

here, would be diagnostic of low magnitude earthquakes (Uyeda and K anamori, 1979;  Scholz and Campos, 1995). T his example shows 

that there is a need to revisit the physical basis used to estimate the magnitude and recurrence of large events at subduction zone.
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R egional tectonic s etting s implified from C urray (2005) and Natawidjadja et al,  (2004).  
P late velocities  of Aus tralia  and India  relative to S unda were computed from the 
regional kinematic model of B ock et al.  (2003).  T he boundary between Aus tralia  and 
India is  a diffus e plate boundary with extends  approximately between 5°S  and 8°N .  In 
this  area velocities  computed from both E uler poles  are s hown.  Age of the s ea floor 
increas es  northwards  from about 50Ma in the epicentral area to  100Ma at the latitude 
of Andaman Is lands . E picenter (NE IC ) and C MT  s olutions  of afters hocks  are s hown in 
red.  E picenter and C MT  s olutions  of afters hocks  of the 28 March,  2005 Mw 8.7 
earthquake are shown in green.
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