Surface uplift and subsidence of the giant Sunda megathrust rupture of March 2005
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RuptureoftheSundamegathrustduringthegiant
(Mw8.7) earthquake of March 28" (above) produced
spectacular tectonic deformation along a 400-km strip of
the western Sumatran archipelago (below and right). The
pattern of deformation reflects the distribution of slip on
the megathrust that produced the earthquake. The uplift
pattern also has important implications for the long-term
behavior of neighboring portions of the megathrust, the
geologic construction of the forearc, and the repetition of
large and dangerous seismic ruptures.

This small island off the west coast
of Nias was lifted ~1.9 m during the
March rupture, stranding the
fringing coral reefs high above sea
level (above). The children in the
inset photo are standing near the
former low tide elevation.

Contour map of coseismic uplift and subsidence
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We combine nearly a hundred
measurements of uplifted coral
and several continuous GPS
records to produce a contour map
of coseismic vertical deformation.
The March rupture (right)
produced arc-parallel belts of
uplift as high as 2.9 m on the two
largest islands above the rupture
and a 1.1-m-deep subsidence
trough between the islands and
the mainland Sumatran coast. The
corals also record the decay of slip
at the southern end of the
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December rupture (above).
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The anticlinal crest and the pivot line marking the transition
from emergence to submergence are predominantly
arc-parallel, but have a pronounced misalignment near the
Banyak Islands between Nias and Simeulue (above). This
suggests that a major structural feature - possibly the Batee
fault (right) - divides the March rupture area into a Nias and a
Simeulue patch.
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Haloban, a village in the

Banyak Islands, subsided
~0.5 m during the March
rupture.
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Inverting the uplift data for slip on the megathrust
yields the highest slips under the islands - up to 8 m
beneath one and 11 m beneath the other.
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Main observations and interpretations

The distribution of uplift and subsidence is consistent with elastic
strain release due to slip on the underlying megathrust - the data
do not require slip on splay faults within the overriding plate

A pronounced deflection in the uplift contours occurs between
Nias and the Banyak islands - this suggests that two main slip
patches are separated by a major discontinuity, perhaps a tear in the
forearc along the Batee fault

A saddle in cumulative Dec. 2004 - March 2005 displacement
occurs where the ruptures overlap on Simeulue island - this may
correspond to a permanently weaker section of the megathrust

The pattern of coseismic uplift is similar to the structural form of
the outer arc islands - and the presence of older, uplifted coral
terraces suggests that slip on the megathrust results in some
increment of permanent uplift

Coseismic vertical deformation, aftershocks,
and faults of the overriding plate
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Dense bands of aftershocks just trenchward of the belts of maximum slip
suggest high concentrations of stress just updip from the coseismic rupture.
The clear trenchward diminishment of uplift and slip may demonstrate that
significant interseismic slip - either seismic or aseismic - occurs on that
portion of the megathrust between the islands and the trench. However,
the fact that the pattern of coseismic uplift is similar to the structural form
of the islands suggests that slip on the megathrust has resulted in an
increment of permanent uplift of the outer-arc ridge.
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