Abstract

With the dense TriNet array in Southern California, the focal mechanism of a Mw ~ 4.0 or
larger event can be easily determined using the full waveform data with relatively long pe-
riods (usually 5+ sec for Pnls and 10+ sec for surface waves), where imperfections of the
velocity models are tolerated. However, the same strategy becomes less effective when
applied to smaller events (Mw < 4.0) due to their poor signal to noise ratio (SNR). Better
utilizing waveform data of these smaller events has to be pursued over much higher fre-
guency bands for the sake of good SNR. However, any direct use of Green's functions Is
difficult since the complications caused by the path and site effects are far beyond the cur-
rent model predictions. In this study, we first determine the focal mechanisms of more
than 160 SC events with Mw ~ 3.60 or larger since 1998 following our improved “cut and
paste” method. With these well-resolved long period solutions, we are able to study the
un-modeled structural distortions on P waves over much higher frequency bands (up to 2
Hz), where the waveforms of an event as small as Mw ~ 2.0 can survive the noise. We
found that the azimuthal patterns of P wave amplitude ratios between different events
(Mw from 3.60 to 4.50) within a cluster well follow the differences in their various well-
known focal mechanisms. This implies that whatever is causing the distortions on the am-
plitudes of P waves is relatively stationary and can be represented by a single “Amplitude
Amplification Factor” (AAF) for the whole cluster at a large fraction of the stations. A de-
tailed investigation is being conducted to learn more about the cause of the AAFs. How-
ever, the ratios between the AAFs on the radial component and those on the vertical com-
ponent Imply mainly a site effect. Taking advantage of these AAFs, we develop a new ap-
proach using high-frequency waveforms of P waves to determine the focal mechanisms
of small events, as long as they occur near well-determined bigger events, which can be
used for calibration purpose. We test our new method and check the short-period solu-
tions against the long-period solutions, which shows remarkable consistency.

Source Mechanisms In Southern California

Figure 1 displays focal mechanisms and
depths of recent SC events since 1998 with
Mw ~ 4.0 and larger determined using full
waveform data of relatively long periods.
However, the same strategy fails when ap-
nlied to smaller events. Although the long
period signals from these smaller events
are easily overwhelmed by noise, they are
well recorded at high frequencies as shown
In Figure 2, particularly for the early arriving
P waves.
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Site Amplification on P Waves

The most difficulty with modeling high frequency P wave is that its amplitude Is easily dis-
torted by un-modeled structural effects, mainly the site effects. Forward modeling of P
waves from well-determined magnitude 4.0+ events enables us to learn more about this
“distortion” on P waves. Figure 3 displays the waveform fits of first P arrivals over two dif-
ferent frequency bands, 0.125 - 0.5Hz in (a) and 0.5 — 2 Hz In (b). The data are shown
In black and the synthetics computed from a “gradient” SC model are in red. Note the
comparisons shown here all have good cross-correlation values of 85% or larger, hence
the “distortion” on P waves is mainly an amplitude amplification effect and can be well de-
scribed by an “Amplitude Amplification Factor” (AAF) defined as *9/ , whered(t)ands(t)de-
notes data and synthetics respectively. The AAFs become more significant as the fre-

guency increases.

Meanwhile, comparison of the AAFs at the same stations derived from clustered events
reveals remarkable similarity regardless of their different mechanisms. Figure 4 displays
the averaged AAFs at each station from eight clustered Mw ~ 4.0 events shown in Figure
5a within the 2003 Big Bear sequence with circles indicating the corresponding variances
defined as | o« "

N AAF
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Retrieving Focal Mechanisms using Corrected P waves

The fact that AAFs at a single station tends to be stable and mechanism independent for a small source region implies the AAFs derived from well-determined bigger
events can be applied as empirical P wave amplitude corrections when modeling smaller events nearby. As a first test, we invert for the focal mechanisms of the eight
events in Figure 5a by modeling high frequency first arriving P waves. The result is displayed in Figure 5.
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Figure 5a displays the long period solutions of depths and mecha-
nisms of eight Big Bear events, from which we derive the AAFs
shown In Figure 4 for the whole source region.

Figure 5b displays the obtained mechanisms by inverting P waves
without the AAFs corrected.

Figure 5c displays the obtained mechanisms by inverting P waves
with the AAFs corrected. Comparison between these high fre-
guency solutions with those long period solutions indicates high
frequency P waves can be modeled to constrain the source
mechanism. Meanwhile, applying amplitude corrections on P
waves Is crucial for a reliable magnitude estimate and obtaining a
well-constrained solution. (more in Figure 6)

Dcpths and Focal Mcchanisms of Events with ML >2.0
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Figure 6a. Depths and Focal mechanisms retrieved from modeling high frequency P-
waves with amplitudes corrected. The events are placed at their double-difference lo-
cations by Chi and Hauksson. Figure 6b and c display the time evolution of the events
for the first day (6b) and the first 50 days (b). The fault planes outlined in purple in figure
6a are used as plotting symbols. The arrows indicates simple unilatery ruptures (see
the next section for details), and a question mark “?” denotes a bi-lateral fault, or simply
a circular fault. Some events which are more complicated as doublets, or triplets ... are

indicated by “%”. Their rupture processes can be retrieved with a deconvolution ap-
proach.

Retricving Rupture Directivitg using an G APProach

With the first order source parameters recovered for the whole cluster, some second
order effect, such as directivity can be examined using an EGF (empiracal Green'’s
function) approach. During the course, the smallest events in the cluster are used as
EGF’s and the rupture processes of the bigger events can be obtained from a forward
modeling approach (shown below) or an inversion approach (deconvolution).
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