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We compare uplifted fossil coral heads, which are reliable recorders of paleo-low tide, to present-day low tide to determine total apparent uplift.  From this raw 
number we subtract 2005 coseismic uplift, and also the appropriate mid-Holocene sea level transgression to calculate net tectonic uplift.  U/Th dates of the uplifted 
corals allow us to calculate uplift rates.  All profiles below show raw uplift values.  Locations on Nias are shown on the map at left.
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Summary

A complication: the mid-Holocene sea level high 

Why long-term subsidence above the rupture?

Geomorphic domains on Nias
2005 coseismic uplift measurements

Anti-correlation of coseismic 
and long-term uplift?
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The 2005 Sunda megathrust rupture provides a rare opportunity to explore the relationship between 
slip on the megathrust and permanent uplift along the outer arc.

A survey of Holocene surfaces around the remainder of the island, for 
which U/Th dates of fossil corals are in progress,  confirms that Holocene 
uplift is concentrated along the east coast of the island, with differential 

offsets apparent across active upper plate faults.  Thus it appears that 
recent deformation of Nias occurs in two distinct domains.  Elastic strain 
accumulation and release due to 2005-type megathrust ruptures causes 
very little net uplift, and even subsidence, of the northwest coast.  Along 

the east coast, active faults in the upper plate appear to be responsible 
for the highest rates of permanent uplift.  The partitioning of 

deformation modes between the northwest (megathrust dominated) 
and east/southeast (upper plate dominated) is reflected in the gross 

geomorphology of the island.

We compare our measurements of 2005 coseismic uplift (above) to longer term 
deformation as recorded by Holocene fossil coral reefs on the outer arc island 
of Nias (right).  A reasonable hypothesis might be that long-term deformation 
mimics the 2005 coseismic signal, such that recent uplift is concentrated along 
the island's northwest coast.  This is not the case, and instead a transect across 
northern Nias (right) shows that Holocene deformation appears to be nearly 
anti-correlated with the 2005 uplift pattern.  In fact, the region of maximum 
uplift -- nearly 3 m in 2005 -- appears to have been subsiding during most of 
the Holocene.  And surprisingly, long-term uplift rates are highest on the east 
coast of the island, where uplift in 2005 was nearly zero.

Location of study area and contour map of 2005 coseismic uplift.  Notice that on Nias island, the welt of 
maximum uplift --  2.5 to 3 m -- runs along the NW coast, while the line of zero uplift is nearly aligned along 
the east coast.

Nias

Areas in red are < 12 m elevation and roughly correspond to 
Holocene surfaces.  These fringe nearly the entire island.  

The blue tint (< 120 m elevation) is at the highest elevation 
of uplifted reefs on the east coast.  Highlighting this 
elevation illuminates the main geomorphic domains on Nias.  
The NW corner of the island, nearly all in blue, is low 
elevation and low relief with relict surfaces and structures, 
and this area lacks the older uplifted corals observed along 
the east coast.  The southern half of the island in grey is 
rugged, with high relief associated with active faulting and 
folding.  Note that the southern half of the island has a 
deeply embayed western coastline.   

A correlation between megathrust slip and basins has 
long been noted (e.g. Mogi, 1969 and more recently 
Wells et al., 2003 and Song and Simons, 2003) but the 
causal explanation for this correlation is unclear.   It may 
be that during the long interseismic period of 
subsidence above the future megathrust rupture, strain 
accumulation is not entirely elastic and a significant 
portion of plastic, non-recoverable deformation takes 
place.  This might be through a bulk mechanism such as 
regional pressure solution.  Alternatively, some type of 
basal erosion may take place coseismically (e.g. von 
Heune and Scholl, 1991).  At right we schematically 
show the possible interplay of shortening along brittle 
upper fault structures and subsidence controlled by the 
earthquake cycle on the megathrust.

Do splay faults plus megathrust ruptre
 explain the uplift pattern?
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In general, sea level has risen worldwide since ~21 
ka due to the melting of glacial ice.  But glacial 
unloading also caused global isostatic adjustments, 
resulting in a spatially and temporally variable mid-
Holocene sea level transgression at lower latitudes.  

The timing and magnitude of this sea level high is 
not well determined for Nias.  At present we use 
model data (right) to apply a correction for the mid-
Holocene sea level rise.  Our observations so far 
suggest that the magnitude of the model rise is 
reasonable, but the timing of the model maximum 
seems several thousand years too late.  At present 
this is the largest source of uncertainty (at worst, up 
to 1 m but more typically tens of centimeters) in 
our uplift measurements.  
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A comparison of coseismic uplift (blue) to 
Holocene uplift (pink) along a profile across the 
north of Nias (left) shows that long-term uplift rates 
do not scale with 2005 coseismic uplift.  Rather, 
maximum uplift in 2005 corresponds to sites that 
are apparently subsiding in the longer term.  
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