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We set up a scenario where there is a known
amount of slip at depth and attempt to use the
resulting surface displacements to invert for
slip at depth. We input 4 spatially and
temporally different signals as described
above. The cumulative slip at any given epoch
t is the sum over the four slip distributions of

time function at time t times the spatial signal.
We add noise in order to make the model more
realistic.
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In order to try to better understand the
unexplained variability, we will process and
invert the data using the above diagram.
Instead of inverting directly using Okada
Inversion we first transform our displacement
data into principal components and their
weightings by significance and by time using a
technique called singular value decomposition:

X =USV!

This construction leads to a small number of
significant principal components which we
then invert for slip at depth. Finally, we
recombine the inverted components with their
significance and time weightings (called
singular values and modes, respectively.) The
application of singular value decomposition in
this context is called principal component
analysis (PCA).

The so-called principal component vectors are chosen and
ordered such that the first principal component vector
explains as much variability of the data as possible. The
second principal component vector explains as much
variability of the data as possible given that the variability
associated with the first component has been removed. The
third principal component vector explains as much data as
possible given the variability explained by the first two
principal components, and so on. We show the first six here.

corresponding to each station. These weights
represent how strongly a principal component
is represented in the time series of that
particular station. Displacement from each
component is proportional to its weight for
that station, allowing inversion via the Okada
formulation. We only need to perform
inversion on the significant components, ones
that explain signal and not noise. In this case

there are four significant components.
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In this particular case, there are 60 principal component vectors in total. Most of the stations (such as 13
depicted above) have their signal explained within the first 3 components. The first component explains most

of the variability in the data, the second slightly more, and the third tops off the fit.
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CONCLUSIONS AND FUTURE WORK

In summary, we have created an analytic method through which it is possible to invert surface displacement time
series for temporally changing slip distributions at depth using multi-component data. In this particular
demonstration, we used three component GPS data, but there is no reason we must restrict ourselves to such data. If
we find a way to have 4 or 5 component data or are restricted to one or two component data, this methodology as
described can use that information efficiently.
There are three major obstacles we aim to tackle:

1. Incomplete Data Sets

2. Multiple Data Types

3. Adaptation to Independent Component Analysis, Wavelets, and Other Linear Beasts

We plan to use recursive model-based imputation to deal with (1). By iteratively inverting complete subsets of the
data, the expectation of the value at the missing points does not change as we “fill in” the “holes” in an incomplete
data set.

Because everything is linear, we can simultaneously invert all of the principal components at once and add in linear
equality or inequality constraints to solve (2.). In the case of linear inequality constraints, the method will have to run
iteratively, reducing the computational advantage of the method.

We are still looking into computationally efficient ways to use decomposition methods other than singular value
decomposition, but this remains an area of active research.
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