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ABSTRACT
We demonstrate a robust method of imaging temporal variation of slip at depth using Principal 
Component Analysis, the backslip model, and inversion of surface displacements for slip at depth 
using the Okada formulation. With synthetically generated GPS time series, we show how effectively 
we can invert multi-dimensional We have expanded on our previous work to allow inversion of 
n-dimensional spatiotemporal data such as InSAR or GPS time series for the time dependent slip 
evolution at depth. 

SCCUR 2007 - 0117S1

Located in Southeast Asia, the Sunda 
subduction zone lies at the interface 
between the Sunda block and the 
Australian plate.
Over the last 200 years, there have 
been at least five giant earthquakes, 
including the December 26, 2004 
earthquake which caused a tsunami 
that killed approximately 100,000 
people. As such, a detailed 
understanding how the two plates are 
slipping past each other can help us 
understand where and when the next 
giant earthquake near the Sunda 
subduction zone is likely to occur. 

The global positioning satellite (GPS) 
system makes it possible to monitor 
deformation of the earth surface along 
plate boundaries with unprecedented 
accuracy. In theory, the spatiotemporal 
evolution of slip on the plate boundary at 
depth, associated with either seismic of 
aseismic slip,  can be inferred from these 
measurements. This requires some 
inversion procedure based on the theory of 
dislocations in an elastic half space (e.g.  
Okada, 1994).  
The techniques currently used to invert 
modern geodetic data are computationally 
intensive. The standard method consists in 
solving for the incremental fault slip 
distribution necessary to account for the 
deformation measured between two 
successive epochs. When we want to 
analyze 10 years of daily GPS data from 
over 1000 GPS stations, the processing time 
is overwhelming. We propose an alternative 
approach combining a model-based data 
extrapolation techniques with principal 
component analysis (PCA) to decompose 

The most straightforward model is one that is 
linear with time.  That is, the rate of 
displacement (vertical displacement in this 
case) at the surface is constant.  This allows us 
to explain most of the first-order features of 
the data (no pun intended.) However, it is clear 
that there is some unexplained variability in 
the data.

The so-called principal component vectors are chosen and 
ordered such that the first principal component vector 
explains as much variability of the data as possible. The 
second principal component vector explains as much 
variability of the data as possible given that the variability  
associated with the first component has been removed. The 
third principal component vector explains as much data as 
possible given the variability explained by the first two 
principal components, and so on. We show the first six here.

In this particular case, there are 60 principal component vectors in total. Most of the stations (such as 13 
depicted above) have their signal explained within the first 3 components. The first component explains most 
of the variability in the data, the second slightly more, and the third tops off the fit.

In summary, we have created an analytic method through which it is possible to invert surface displacement time 
series for temporally changing slip distributions at depth using multi-component data. In this particular 
demonstration, we used three component GPS data, but there is no reason we must restrict ourselves to such data. If 
we find a way to have 4 or 5 component data or are restricted to one or two component data, this methodology as 
described can use that information efficiently.
There are three major obstacles we aim to tackle:
 1. Incomplete Data Sets
 2. Multiple Data Types
 3. Adaptation to Independent Component Analysis, Wavelets, and Other Linear Beasts

We plan to use recursive model-based imputation to deal with (1). By iteratively inverting complete subsets of the 
data, the expectation of the value at the missing points does not change as we “fill in” the “holes” in an incomplete 
data set.

Because everything is linear, we can simultaneously invert all of the principal components at once and add in linear 
equality or inequality constraints to solve (2.). In the case of linear inequality constraints, the method will have to run 
iteratively, reducing the computational advantage of the method.

We are still looking into computationally efficient ways to use decomposition methods other than singular value 
decomposition, but this remains an area of active research.

The figures to the right are examples of 
cumulative slip distributions at the 800th 
and 400th epochs. We see that we are able 
to faithfully reproduce both of these 
signals up to a smoothing factor. This 
smoothing factor is a result of the 
necessary condition that the slip 
distribution on the fault be relatively 
smooth; the problem we wish to solve is 
“ill-posed,” meaning that there are more 
free parameters in our model than data. 
This is realistic since the same problem 
arises in nearly all inversion problems in 
geophysics. We can infer that any 
computation performed using the PCA 
inversion technique described here will be 
a smoothed version of the “real” scenario.
The computational benefits of this method 
are vast in this story. Instead of 
performing 999 day-by-day inversions as 
current methods must do, we have 
recovered most of the signal performing 
only 4 inversion. The computational 
savings are on the order of 100 times once 
we take into account the additional 
computation required to decompose and  
recompose the data matrix.

the slip into orthogonal components. 
Reconstruction of the fault slip history 
requires only the inversion of each 
Principal Component. We prove that, in the 
ideal case, the solution space of the 
standard method and the PCA-based 
methods are identical. Further, in synthetic 
tests our method produces comparable 
results to the standard inversion technique 
with less computational complexity. This 
method can be trivially generalized to any 
linear inversion algorithm.
To test this inversion method, we have put 
together a representative test case with 
three spatially distinct time-varying signals 
on the fault plane: 
 1. Stick-slip above 30 km depth.
 2. Constant creep below 30 km depth.
 3. A transient slip event at the southern 
edge of the modeled fault zone. 
We are able to effectively recover the slip 
history despite noise. It is apparent that 
the recovery does not depend on the 
particular functional forms of the imposed 
slip. 
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Each principal component has a weight 
corresponding to each station. These weights 
represent how strongly a principal component 
is represented in the time series of that 
particular station.  Displacement from each 
component is proportional to its weight for 
that station, allowing inversion via the Okada 
formulation. We only need to perform 
inversion on the significant components, ones 
that explain signal and not noise. In this case 
there are four significant components.

Station Distribution:                Random (Even Distribution)
Number of Stations:                  20
Number of Epochs:                   1000
Number of Readings/Epoch: 3 (GPS)
Number of Components:        6
Signi�cant Components:    3-4
Variance Explained:                  0.968-0.985
Noise Magnitude:                     0.010 cm
Signal Magnitude:                    ~5-10cm/1000 epochs

Size of Fault Zone:                  120 km x 240 km
Origin:                               (0,0) (Lat, Long)
Nu:                                   0.25
Number of Patches:                  6 x 12 = 72
Dip Imposed:                         15 degrees (dipping East)
Azimuth Imposed:                     0 degrees CW of North

Decomposition of data:           Centered SVD
Inversion Method Used:           Okada Formulation
Strength of Laplacian:       0.20

Synthetic Scenario Summary

We set up a scenario where there is a known 
amount of slip at depth and attempt to use the 
resulting surface displacements to invert for 
slip at depth. We input 4 spatially and 
temporally different signals as described 
above. The cumulative slip at any given epoch 
t is the sum over the four slip distributions of 
time function at time t times the spatial signal. 
We add noise in order to make the model more 
realistic.

In order to try to better understand the 
unexplained variability, we will process and 
invert the data using the above diagram. 
Instead of inverting directly using Okada 
Inversion we first  transform our displacement 
data into principal components and their 
weightings by significance and by time using a 
technique called singular value decomposition:

This construction leads to a small number of 
significant principal components which we 
then invert for slip at depth. Finally, we 
recombine the inverted components with their 
significance and time weightings (called 
singular values and modes, respectively.) The 
application of singular value decomposition in 
this context is called principal component 
analysis (PCA).

The slip associated 
with the first principal 
component is nearly 
constant across the 
entire fault plane. It 
explains much more 
variance than the other 
components.

The slip associated with 
the second principal 
component has a sharp 
divide at 120 km, 
precisely where there is 
a separation between 
creeping and stick-slip 
behavior.

The slip associated with 
the third principal 
component is less 
homogeneous than the 
other first two. This 
reflects that the lower 
order components are 
more spatially coherent 
signals.
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