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1 Abstract
The flat slab subduction of the Cocos plate beneath central Mexico is determined from the receiver functions (RFs) utilizing
data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is
shallowly dipping to the north at 15◦ for 80 km from Acapulco and then horizontally underplates the continental crust for
200 km, from the trench to the southern extent of the Trans-Mexican Volcanic Belt (TMVB). The migrated image of the RFs
shows that the slab is steeply dipping into the mantle at about 67◦ beneath the TMVB. Both the continental and oceanic
Moho are clearly seen in both images. In particular, the RF image from Acapulco to a point 150 km to the north shows the
erosion of the continental material by the slab. However, there is no apparent evidence of crustal compressional features
supported by the geologic or geodetic data due to the underplating. Modeling of the RF conversion amplitudes and timings
of the underplated feature indicates the need for a low-velocity zone between the plate and the continental crust. This may
indicate melted upper crust or melted continental lithosphere.

2 Data
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Map on the left shows the region of our study and stations in two MASE lines indicated as red triangles. Isodepth contours
of the subducted Cocos plate beneath the North American plate (Pardo and Suarez, 1995) are shown in the map. Map on
the right shows the distribution of teleseismic events used in the study. Dotted lines are distance of 30◦ and 90◦ away from
the center of the study area. The events are colored in different colors according to depths.

3 Method: RF Stacking Algorithm and RF Migration
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RF Stacking Algorithm

Crustal thickness (Moho, H) and Vp/Vs
ratio (κ) for station ATOT (Atotonilco el
Grande). On the left are the individual RF
traces sorted according to the ray param-
eter. The predicted arrival times of the
primary phase (Pms) and two multiples
(PpPms and PsPms) are marked by the
solid and dashed lines. On the right is the
contour map of the weighted summation
function (Zhu and Kanamori, 2000) for the
crustal thickness (Moho, H) and Vp/Vs ra-
tio (κ).

RF Migration

Plan view of geometry for several teleseimic wavefields. Incident plane wave is assumed to be P wave coming from a
distant source; as hitting the scatterer, it converts to S wave to become Ps or other wavefields such as PsPs, PsSs, PpPs,
or PpSs. Each wavefield is migrated using a Kirchhoff-style migration, which characterizes the ouput model as a grid of
point scatters.

4 RF Results
(1) Anisotropic layers present in the crust
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Radial and tangential RFs for station PALM, TEPO, and CASA. The radial and tangential RFs are computed by rotating NS
component RF and EW component RF by 15◦ clockwise. For these particular stations, the RFs are plotted according to the
back-azimuth. Note sudden changes in polarity (blue to red or red to blue) especially on the tangential RFs, indicating the
anisotropic layers present at shallow depths.

(2) Stacked RF and migration results
Stacked RFs using events from all direc-
tions (top), RF migration image from the
surface to a depth of 130 km (middle),
and migrated image of the upper mantle
structure including 410 and 660 disconti-
nuities (bottom). In the top panel, the blue
interpretation segment shows the top of
the subducting slab; the red segment the
oceanic and continental Moho; and, the
orange segment partial melting features
from the TMVB. In the middle panel, the
blue interpretation line shows the top of
the subducting slab (a dip of 67◦ under-
neath the TMVB). The red line shows the
bottom of the subducting slab; the dotted
red line the continental Moho shallowing
towards the north; and the dotted brown
line mid-crustal interfaces. In the bot-
tom panel, note the upward-moving trend
of the 660 discontinuity underneath the
TMVB suggesting an upwelling.

5 Modeling Result
P-wave velocity model for a steeply dipping slab

P-wave and S-wave velocity and density
models are necessary to generate syn-
thetic RF using a 2D finite-difference wave
propagation program (Graves, 1996). We
let plane waves with variable incident an-
gles in the range of ray parameters from
0.04 to 0.08 enter from the bottom of the
three models.

Migrated image using synthetic RFs compared with the one using real RFs

The migrated image using synthetic RFs
includes primary and secondary conver-
sions from the Moho and the slab. Es-
pecially, the oceanic Moho with the multi-
ples, the continental Moho with the mul-
tiples, and the downgoing slab are well
captured. To note, the migrated image us-
ing real RFs includes more complicated
features like mid-crustal interfaces and
basin on the TMVB, which we did not in-
clude for the synthetic test.

6 Preliminary Result on Velocity Models for the Flat Slab

RFs using earthquakes from SE dir (left) and from NW dir (right)

Synthetic RFs using sources from LHS (left) and from RHS (right)

Two velocity models constructed to generate synthetic RFs

The subducted Cocos plate as imaged with RFs
underplates the continental crust for a distance
of approximately 300 km from the trench. Two
different velocity models for the flat slab are con-
structed by considering the azimuthal depen-
dence of the RF images (bottom panel). In the
top panel, we show stacked RFs using events
from the SE direction (left) and the NW direction
(right). We observe that the image of the top of
the slab appears to be strong from the RFs using
events from the SE direction, and the image of
the oceanic Moho appears to be strong from the
RFs using events from the NW direction. In gen-
erating synthetic RFs (middle panel), we match
impedane changes of the interface between the
crust and the slab by measuring RF amplitudes
and timing of the RF peak arrivals from the Moho
and the slab. We ignore complicated structures
within the crust (e.g., mid-crustal interfaces and
basin structure near the surface). We include
the vertical gradient in velocity within the crust
and the horizontal gradient in velocity in the slab.
A low velocity zone (lower than normal oceanic
crustal velocities) might be necessary to repro-
duce impedance contrasts that we are not resolv-
ing at the moment.

7 Discussion / Conclusions / Future Work
1. We have obtained RF images of crustal structures associated with tectonic history of subducted Cocos plate beneath

central Mexico for the first MASE line.
•Flab slab subduction from the Pacific coast to the southern extent of TMVB

– The subducting oceanic crust is shallow, dipping to the north at 15◦, for 80 km from Acapulco.
– There is no compressional feature on surface due to the underplating according to geologic or geodetic data.
– The continental Moho is about 40 km deep beneath the TMVB and shallows towards the north.

•Strong low velocity zone underneath the TMVB
– There is apparent maximum attenuation at the top of the dipping slab

•Steeply dipping (approximately 67◦) slab underneath the TMVB
– The slab geometry supports the idea of slab roll-back.

2. For the future work, we process seismograms recorded from the second MASE line (VEOX) to generate the RFs.

5 events (07/2007 to 08/2007) occurred
on the SE direction from the VEOX array
and 27 (out of 46) stations are used. The
figure shows the stacked RFs plotted from
the surface to a depth of 100 km. The
slab geometry is not yet determined due
to lack of data and limited number of fully
operating stations, but the Moho is clear.
Note that the Moho appears to be shal-
lowing towards the north like we saw from
the first MASE line.
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