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Abstract
Recent upper-mantle triplication data recorded by USArray display sharp variations in both 
travel time and differential times between branches similar to that reported by Song and 
Helmberger (2006). Jumps between branches by up to 8 second are common in S-data. 
Generally, the recent tomography images of P-travel time data by the EarthScope community, 
Burdick et al (2008), predicts the horizontal geometry quite well, but does not predict the 
waveform triplications because of the choice of the reference model. The present western US 
reference triplication P-model, GCA, has the 410 discontinuity at 395 km, which is 
incompatible with recent S-models. Hence, we propose a modified P-model that can be used 
with S to construct a travel-time delay map of paths sampling above the 410 and in the 
transition zone similar to that derived by Chu and Zhu (2008) for Tibet. Such data can then be 
added to conventional datasets using a hybrid tomographic method correcting for realistic 
path corrections in the upper mantle. Models with low-velocity zones and high-velocity zones 
should greatly help in producing accurate synthetics modeling.
Deep events provide best sources, such as the November 26, 2007, Guerrero, Mexico 
earthquake. This event provided a complete map of triplications from 10 to 30 degree. Based 
on this dataset, a 1D P-wave velocity model has been constructed for western US. In this 
model, the 410 velocity discontinuity is at 420 km, which is 25 km deeper than the GCA. The 
660 velocity discontinuity is at 648 km, 12 km shallower than the GCA model. Velocity jump at 
the 660 discontinuity is 4.20%, compared to 5.78% for the GCA model.
We can also use both the techniques of multi-path detector and waveform modeling to model 
the teleseismic S wave data recorded by USArray for events arriving from different directions.  
The regions with complex S waveform correlate with the velocity anomaly in Burdick's 
tomography model. Some large travel time jumps and waveform distortions in the data 
suggest the possible existence of some sharp structures. 

P-wave triplication Multi-path detector for teleseismic S wave

Summary and Future efforts

Recent upper-mantle triplication data recorded by USArray display 
sharp variations in both travel time and differential times between 
branches similar to that reported by Song and Helmberger (2006). 

Jumps between branches by up to 8 second are common in S-
data. Generally, the recent tomography images of P-travel time 

data by the EarthScope community, Burdick et al (2008), predicts 
the horizontal geometry quite well, but does not predict the 

waveform triplications because of the choice of the reference 
model. The present western US reference triplication P-model, 

GCA, has the 410 discontinuity at 395 km, which is incompatible 
with recent S-models. Hence, we propose a modified P-model that 
can be used with S to construct a travel-time delay map of paths 
sampling above the 410 and in the transition zone similar to that 

derived by Chu and Zhu (2008) for Tibet. Such data can then be 
added to conventional datasets using a hybrid tomographic 
method correcting for realistic path corrections in the upper 

mantle. Models with low-velocity zones and high-velocity zones 
should greatly help in producing accurate synthetics modeling.
Deep events provide best sources, such as the November 26, 
2007, Guerrero, Mexico earthquake. We first inverted the focal 

mechanism and earthquake depth from teleseismic seismograms 
using a grid search algorithm. The best-fit solution shows a normal 

faulting at the depth of 52 km. This event provided a complete 
map of triplications from 10 to 30 degree. The AB and CD 

branches of P waves cross at the distance of 17 degree, which is 
0.5 degree larger than that predicted by the GCA velocity model. 

The separation between CD and EF branches is about 0.5 second 
smaller at 20 degree compared with the GCA prediction, which the 

separation aggress with the GCA prediction at larger distances. 
Based on this observation, a 1D p-wave velocity model has been 

constructed for western US. In this model, the 410 velocity 
discontinuity is at 420 km, which is 25 km deeper than the GCA. 
The 660 velocity discontinuity is at 648 km, 12 km shallower than 
the GCA model. Velocity jump at the 660 discontinuity is 4.20%, 

compared to 5.78% for the GCA model.

New P tomography model derived from USArray

MIT P-wave travel time tomography model for the United States created from the global EHB 
catalogue plus USArray Transportable Array from 2004 to November 2007 (From Burdick et 
al, 2008). 
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Waveform data from a deep event at Guerrero, Mexico (November 26, 2007). We first inverted the focal 
mechanism and earthquake depth from teleseismic seismograms using a grid search algorithm. The 
best-fitting solution shows normal faulting at the depth of 52 km. This event provided a complete map of 
triplications from 10 to 30 degree.  

Left shows the data (black) and synthetics (red) from 1D model mGCA displayed on the right. For the 
records with azimuth of 327o , the AB and CD branches of P waves cross at the distance of 17 degree, 
which is 0.5 degree larger than that predicted by the GCA velocity model (gca.con at the right). The 
separation between CD and EF branches is about 0.5 second smaller at 20 degree compared with the 
GCA prediction, which the separation aggress with the GCA prediction at larger distances. Based on this 
observation, 1D p-wave velocity model (mGCA) has been constructed for western US. In this model, the 
410 velocity discontinuity is at 420 km, which is 25 km deeper than the GCA. The 660 velocity 
discontinuity is at 648 km, 12 km shallower than the GCA model. Velocity jump at the 660 discontinuity is 
4.20%, compared to 5.78% for the GCA model.

For the data recorded at the azimuth of 329o , the triplication behavior can be explained very well by 
GCA velocity model with slight correction on the gradient in the transition zone (mGCA2).

Left displays the 2D synthetic predictions (red) from the Burdick's tomography model. The differential 
travel times between data and synthetics for IASPEI91 and Burdick's tomography model are shown on 
the right two columns found by cross-correlation of synthetics and data. Crosses mean the travel time of 
data is slower than synthetics. The data with faster travel time are indicated by diamonds. The near 
"zero" time difference in the northern part of the array suggests that the model predicts the P data very 
well. The slow region recorded by stations in Southern California and Arizona indicates that some slow 
velocity structures may be missed in Burdick's model along the path form Mexico to Western US.

160o 200o 240o 280o

-20o

0o

20o

40o

60o

20080903

20081012

20070716

240
o

250
o

260
o

30
o

35
o

40
o

45
o

0 1 2 3 4

Time shift of ∆LR

240
o

250
o

260
o

30
o

35
o

40
o

45
o

3 4 5 6 7 8

Time shift of ∆T 

0 10 20 30 40 50

Time (s)

315

320

325

330

335

340

A
zi

m
ut

h 
(°

)

-10 0 10 20 30 40 50

Time (s)

Distance:76°~77°
Event 20081012

Data MPD Data MPD

0 10 20 30 40 50

Time (s)

-10 0 10 20 30 40 50

Time (s)

Distance:76°~77°
Event 20081012

  Multi-path detector (MPD) is 
particular useful to detect between 
horizontal structure (in-plane multi-
pathing) vs. vertical (out-of-plane 
multi-pathing) directly from 
processing array waveforms. ∆T 
shows the travel time delay relate to 
a reference model (PREM). The ∆LR 
indicates the complexity of the 
waveform. The waveform is more 
complicate with larger ∆LR. The 
overlain arrows in the footprint 
patterns indicate the gradients of th 

Display of two South American event, 
one Kuril event, and the great circle 
paths to USArray. 

Examples of data and multi-path detector synthetics for event 20081012.
Delay time results for event 20081012 
with MPD. The data show strong 
multi-pathing from YellowStone to the 
Colorado Plateau, which is shown on 
the tomography image below.
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Delay time results for event 20080903 with MPD. The multi-
pathing pattern is strong along the Jemez Lineament and 
Yavapai Province.

Burdick's tomography model 
at depth of 100 km.

Burdick's tomography model 
at depth of 100 km.
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of this dataset show small multi-pathing. Note the small 
pattern with large ∆LR at the south east of Seattle, see 
Part II.

Waveform modeling
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To calculate the synthetics for teleseismic S wave, we 
implement the Burdick western US regional tomography 
model into Grand's global tomography model.  The figure 
below shows a cross section from the event 20081012 to 
station H17A. Because Burdick's model is P model, we 
assume a constant R=δlnVs/δlnVp for transforming to a S 
model.  
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Shear velcoity 
model with R = 1.5.

Shear velcoity 
model with R = 3.5.

With larger R value, we can predict the abrupt travel time 
change at azimuth of 328o (from station H18A to H17A). But 
the model predictions are too fast for smaller azimuth. 
Although the calculation is 2D, strong out-of plane multi-
pathing is expected when crossing this region.

The preferred 1D model from triplication data has a deeper 410 and shallower 660 
than the GCA model.

The patterns produced from the multi-path detector show strong indications of of 
where the sharp boundaries along the edges of the anomalies.

To model both P and S wave data, we can obtain a good constraint on the R values 
for different anomalies, which is crucial to understand the chemical or thermal 
original of those anomalies, such as YellowStone, Rio Grande Rift etc, Song and 
Helmberger (2007).
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