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Figure 1: Continuously recording GPS station coverage in Japan, Taiwan, and California. Maps

are plotted at the same scale.

1 Overview
The primary objective of this methodological study is to present a
wavelet-based multiscale representation of three-component surface
velocities, as a tool to facilitate analysis of geodetic observations from
dense GPS networks. The density of continuous GPS observations
now available for several regions is exemplified by network distribution
in Japan, Taiwan, and California (Figure 1).

In comparison to previous GPS studies (e.g., Feigl et al., 1990;
Ward , 1998; Beavan and Haines, 2001), novel aspects of our ap-
proach include:

1. an explicit and consistent decomposition of the velocity field into mul-
tiple scales at all locations;

2. a minimum scale at which we estimate the velocity field at a particu-
lar location that is controlled by the local station coverage;

3. inclusion of the vertical velocity observations if they are available;

4. use of spherical wavelets in representing the velocity field.

2 Multiscale estimation procedure
From a data set of irregularly distributed discrete observations, we
seek to estimate a continuous, spatially varying velocity field

v(θ, φ) = vr(θ, φ) r̂ + vθ(θ, φ) θ̂ + vφ(θ, φ) φ̂,

where r̂ is the vertical direction, θ̂ is the south direction, and φ̂ is the
east direction.

A scalar function on the surface of the sphere, d(x), — for exam-
ple, the vertical component of velocity — can be expressed in terms of
basis functions, gj(θ, φ), as

d̂(x) =
M
∑

k=1

mk gk(x) −→ d = Gm .

Our choice of basis functions is the “Difference of Gaussian” spherical
wavelets of Bogdanova et al. (2005) (Figure 2). The solution to the
least-squares problem is

m =
(

G
T
C

−1
D G + λ2

S

)

−1
G

T
C

−1
D d ,

where CD is the data covariance matrix, S is the regularization matrix,
and λ is the regularization parameter, which we choose via leave-one-
out cross-validation.

Once we have estimated the velocity field v(θ, φ), we can readily
compute its surface derivatives and other scalar quantities, like dilata-
tion rate, strain rate and rotation rate. The spatial velocity gradient, L,
is defined by

L ≡ (∇v)T = v∇,

and can be decomposed as L = D + W, into a symmetric tensor, D,
and anti-symmetric tensor, W, as shown next.
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Figure 2: Spherical wavelet frame functions. (a) Spherical grids used for determining the lo-

cations for the centers of the spherical wavelet frame functions. (b) Three different scales of a DOG

(Difference of Gaussian) spherical wavelets. (c) Longitudinal profiles of wavelets in (b). (d) Harmonic

spectra of wavelets in (b).

For a 3D velocity field, the strain-rate and rotation-rate tensors are
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3 Applications to synthetic and real datasets
We first illustrate the procedure using a velocity field for an infinite
strike-slip fault (Figure 3).

Next we use the velocity field from the continuous GPS network in
southern California (Figure 4), which contains the vertical component
as well. If the velocity field is dominated by net rotation, we remove a
uniform rotational field (Figure 5); this represents the longest-scale fea-
tures of the field. We then estimate the three-component velocity field,
v(θ, φ), using spherical wavelets. Equipped with v(θ, φ), we compute
the overall dilation-rate, strain-rate, and rotation-rate fields (Figure 6),
and also the multiscale components (Figures 7 and 8).

In Figure 9 we present a synthetic example of two dilatational
sources with different locations, magnitudes, and signs. Figure 10
shows how the multiscale representation easily captures the two sig-
nals in the input velocity field.

4 Toward multiscale time-dependent event detection
Our ultimate objective is to monitor time-dependent signals in dense
GPS networks. In this study we have only dealt with the spatial part of
the problem, showing that the multiscale representation is well-suited
to identifying and characterizing geophysical signals of all scales.
This approach is a step toward global multiscale monitoring of time-
dependent GPS displacement fields, in hopes of efficient and accurate
characterization of Earth’s surface deformation and the detection of
geophysically interesting phenomena.
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Figure 3: Synthetic example: Interseismic field for a locked strike-slip fault, locked at 15 km depth

and slipping at 35 mm/yr. (a) Black arrows denote a synthetic horizontal velocity field with Gaussian

errors added, computed at the actual GPS observation points. Background color is the magnitude of

the multiscale estimated horizontal velocity field, using scales q=3 to q=7. The q=7 spherical wavelet

has a support of 87 km. Dilatation rate (b), strain rate (c), and rotation rate (d), each computed from

the estimated velocity field. As expected, the dilatation rate is nearly zero everywhere, while the strain

rate is highest near the fault. The mask is applied to regions that are not resolved by the estimated

field.
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Figure 4: REASoN continuous GPS velocity field, southern California. (a) Horizontal compo-

nent, with ellipses denoting the 95% confidence interval. (b) Vertical component, with yellow circles

denoting the estimated standard deviation.
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(a)  Original field 
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(b)  Uniform rotational field 
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(c)  Residual field  =  (a) - (c) 

Figure 5: Removing a pure rotational field from the REASoN velocity field. (a) REASoN hori-

zontal velocity field in southern California (Figure 4). (b) Rotational field computed from an estimated

Euler vector for the field in (a). (c) Residual field, (a) - (c). The removal of a rotational field has no

effect on strain rate and dilatation rate.
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Figure 6: REASoN velocity field. See Figure 3 caption for details. The highest strain rates occur

in the regions of Parkfield and the Salton trough.
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Figure 7: Multiscale estimation of REASoN velocity field in southern California. In each row,

from top to bottom, we add an additional finer scale of frame functions in the estimation of the velocity

field.
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(a)  Data - Est(q=3-5) 
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(b)  Data - Est(q=3-6) 
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(c)  Data - Est(q=3-7) 
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(d)  Data - Est(q=3-8) 

Figure 8: Residual horizontal velocity fields for the REASoN dataset. As shorter scalelengths

are included in the estimated field, the residuals decrease.
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Figure 9: Synthetic example: Two dilatational sources. See Figure 3 caption for details. The tilt

due to the vertical field gives rise to the ring-like pattern in the rotational field (d).
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Figure 10: Multiscale estimation of the dilatational field for the synthetic velocity field shown in

Figure 9a. Dashed circle corresponds to the region of the smaller, negative dilatational source, which

is only apparent at scale scale q=8.
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Figure 11: Strain-rate field derived from the multiscale estimation of the REASoN velocity field

in the Parkfield region, using only scales q=6 to q=9. In regions of dense station coverage, we are

able to compute high strain-rate estimates, if they are present. Here the estimated strain rate across

the San Andreas fault is about 1.5 × 10−6 yr−1. See Figure 6c for context.
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