Monitoring of the Long Valley Caldera inflation episode from a principal component
analysis-based inversion method applied to InSAR and EDM Data

Abstract

In this study we apply the principal component analysis-based inversion method (PCAIM, Kosit-
sky2009) on multiple sources of geodetic datasets. PCAIM can be used to extract from the
original data the signals that are coherent both in time and in space. Because tectonic and
non-tectonic signals have different properties of coherency, they contribute different amounts to
each component. By inverting and summing the components with the largest portion of tectonic
signal separately with known Greens functions and discarding those that appear to primarily be
noise, we can rebuild the InNSAR time series with primarily tectonic signals.

We test this method in the Long Valley Caldera area which experienced multiple inflation episodes
since the 80’s. We focus on the 1997-98 episode, using 24 ERS scenes and 65 interferograms. To
give the decomposition more temporal resolution and continuity, we add 8 two-color electronic
distance meter (EDM) time series which have dense temporal sampling rates to carry out joint
decomposition and inversion. The result shows that the first principal component contains most
of the inflation signals with a clear pulse in 1997-98. A direct inversion using Mogi’s model shows
the inflation of magma near 11 km in depth. This study proves the capability of PCAIM to
model and interpret InSAR time series and perform true joint inversions between multiple data
source.

Techinical Overview of PCAIM

We place a geodetic dataset with identical sampling epochs in a m X n matrix Xy where each row
corresponds to one time-series from the whole dataset. We assume that the medium is elastic,
and therefore the relationship between the source that generates the signal and the response at
the surface is linear. Surface displacement then obey:

Xo=G,L

where GG, denotes the Green’s functions relating surface displacement Xy with the source L at
depth. We then apply the principal component decomposition on the data matrix Xy and get:

X, =U,S, V!

where U is the spatial function, V' is the time function, .S is the principal value and r is the num-
ber of principal components necessary to fit the data within uncertainties. In this decomposition,
each individual component corresponds to a linear combination of the contributions from various
sources and not to a particular, identifiable physical source, although the various components
can be recombined to extract the contribution of particular sources. To determine how many
components are needed to represent the original data, we select the number of components so
that the reduced chi square Xfed of X — X, is approximately equal to one, i.e.

=1 )=

where NV is the total number of data. We can also use F'-test to determine the appropriate num-
ber of components to be selected:
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Once we determine the appropriate number of components to use in the decomposition, we can
carry out the inversion on each of the spatial function:

GoL, = U,

After solving for the source model for each component, we can sum up the contribution from all
the components and derive the time-series for the source.

Inversion by Joining Datasets of Different Sampling Epochs

Now we have two geodetic datasets with very different sampling epochs, for example InSAR vs.
GPS. If we combine them together into one big data matrix X, the matrix will be zero-padded in
many entries due to the low temporal sampling rate of SAR imagery. We have adaped our method
by including a data error matrix Wy. Whenever there is no data entry in the Xy matrix, we set
its error to be Inf. Then we use a more sophisticated decomposition developed by Srebro and
Jaakkola|2003]. With this adaptation, we can take advantage of the high spatial sampling rate of
InSAR data and high temporal sampling rate of GPS (or other continuous geodetic measurement)
data to invert for the time-series of source function.

In this study, we select the Long Valley Caldera to test this joint inversion method. The
Long Valley Caldera has experienced a large inflation event between mid-April and late June
1997. This episode is one of the five inflation events through the past 30 years. During the 1997
episode, it first showed an exponential growth increase in mid-April, and an exponential growth
decay in late November 1997, cumulating in ~10 cm of uplift [Newman et al., 2001; Hill 2003].
We use 65 interferograms and carry out the simplest version of SBAS time-series |Berardino et
al., 2002]. We also including the two-color electronic distance measurement (EDM) data which

has daily record since 1984 [Langbein 2003|. Next we show the work flow of combining datasets
for PCAIM analysis.
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