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A recent technique for processing array data searching for multipathing has been applied to USArray data [Sun and Helmberger, 2009]. 
A record can be decomposed  by S(t) + A*S(t+ ∆LR), where S(t) is the synthetics for a reference model. Time separation ∆LR and 
amplitude ratio A are needed to obtain a useful cross-correlation between a simulated waveform and data. The travel time of the 
composite waveform relative to the reference model synthetics is defined as ∆T. A simulated annealing algorithm is used to determine 
the parameters of ∆LR, ∆T and A. Whereas the conventional tomography yields a travel time correction (∆T), our analysis yields an extra 
parameters of ∆LR which describe the waveform complexity. With the array, we can construct a mapping of the gradient of ∆LR with 
complexity patterns. A horizontal structure will introduce the waveform complexity along the distance profile (in-plane multipathing). A 
azimuthally orientation ∆LR pattern indicates a vertical structure with out-of-plane multipathing. Using such maps generated from artificial 
data we can easily recognize features produced by downwelling (DW) vs. upwelling (UW) and address their scale lengths. 
In particular, we find a line of DW's along the Rock Mountain Front which have anomalies similar to those found along the La Ristra line. 
These ∆LR anomalies are up to 8s, which corresponds to features extending down to the 600 km discontinuity with a 6% shear velocity 
increase. Such features appear to be produced by delamination caused by the sharp lateral temperature gradient [Song and 
Helmberger, 2007abc]. 
The ∆LR patters for the Western US indicates a number of UW's, in which the Yellowstone is particularly obvious. The records for events 
from the southwestern and southeastern directions show generally simple waveform across the Yellowstone -Snake River Plain (SRP). 
For the event from the northeast, the stations along the western edge of SRP show strong waveform distortions, which indicate 
azimuthally multipathing occuring and a structure with sharp vertical wall beneath SRP. 

Abstract

∆LR: Describing how strong the effect of multi-pathing is.
∆T: Time delay related to a reference 1D model (PREM etc).

The displacement wavefield by adding non-great circle path 
contributions. If we focus on short periods, we can only treat 
the left and right aspects of the field. With the Multi-path 
Detector (MPD) [Sun et al., 2009], we recover two timing 
delays. One associated with the shift between the left and 
the right branches (∆LR), and the other between the entire 
simulation relative to the reference model or total delay (∆T). 
The differential times generated from a 2-D array can then 
be used to construct the spatial gradient of these delays.
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Figure 3. USArray records (direct S) for an a South American event (20080903). The records along profile AA' and BB' 
are plotted on the right. Some waveforms are simple and some are strongly distorted, which indicates the occurrence of 
the strong multi-pathing and upper-mantle structure (Fig. 2).
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Figure 1. The P-wave tomographic model beneath Western US (from Burdick et al., 2009). It clearly displays the relatively slow western 
basin-and-range including Nevada, most of Arizona at depth dwon 200 km. Significant strips of slow velocities along the Snake River 
Plain (SRP) structure, the St. George lineament and Rio Grande Rift are detailed. Most of the features are gone at depth greater than 
300 km suggesting relatively shallow mantle structure involvement in crustal tectonic feature. However, to model multi-pathing generally 
requires deeper structures.
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Figure 2. Multi-pathing example; a) Elevation map along with the LA RISTRA Transect (triangles) crossing the edge of the Great Plains, 
the Rio Grande Rift and the Colorado Plateau. b) Deconvolved S waveform section (event 990915) showing waveform distortion across 
the transition between the western Great Plains and the Rio Grande Rift (solid triangles in a)). Waveform broadening is present at 
stations towards the NW such as NM12-NM18. The S velocity section A-A' of model A [Song and Helmberger, 2007] extending down to 
600 km is displayed in c). d) An example S wave record section (event 20000423) shows developed S waveform complexity from station 
NM07 to station NM14, which also occurs on the records for a closer event in e). The ScS complexity in f) appears at the same stations 
as the S in e), which indicates that the cause of the complex waveform is relatively shallow (upper mantle) since it affects both phases.
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Figure 4. S-waveform observations for 
profile CC' in FIg. 3 with MPD simulations 
and timing delays (∆T and ∆LR)on the 
right. Complex wavefroms and large ∆LR 
value (red color) occured at Southern New 
Mexico, which agree with the study along 
La Ristra line. This suggests that these 
anomalies corresponds to features 
extending down to 600 km at least with a 
6% shear velocity increase. On the right, 
the records are plotting with absolute 
amplitude. The records with strong multi-
pathing display  depressed amplitude.

MPD patterns for Western US

Figure 5. ∆T, ∆LR, and amplitude (A) pattterns for different events recorded by USArray. These are all 
teleseismic events. The ∆T patterns agree well with the tomographic result (Figure 1).The multi-pathing 
pattern (∆LR) show highly azimuthal dependence. For South American events, strong multi-pathing occurs 
along the Rocky Mountain Front. But these regions also show weak multi-pathing when the events come 
from the north. The azimuthal dependence indicates that the multi-pathing is highly directional. The 
preferred strong multi-pathing for the event from the South suggests that the anomalies in the upper mantle 
dip to the south, which give the strongest multi-pathing when rays sample the dipping structure. Another two 
regions with strong multi-pathing are the Snake River Plain (SNR) and Western Idaho. The third column 
displays the amplitude ratio of S arrival between data and calculated synthetics with WKM method. The 
amplitude ratio map correlates with the DLR pattern very well. The amplitude of the record in strong multi-
pathing regions is 3~4 times less than the normal region.
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Figure 6. Numerical examples of simple structures; 3D SEM synthetics for a 
box structure, which extended from 100 to 400 km with -8% shear velocity 
perturbation for the Iceland Event geometry. Note the increase of S amplitude 
when sampling the middle of the structure although those waveforms are 
simple. Multi-pathing occurs along the two edges, which indicate strong 
azimuthally multi-pathing.

Figure 7. The same geometry as that in Fig. 6 but with 8% shear velocity 
perturbation inside the box. There are noticeable amplitude decreases when 
sampling the middle of the anomaly.
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Figure 8. MPD patterns of direct S for a Japan event 
recorded by stations Yellowstone. To generate such a 
pattern, a plume-like low velocity structure as in model 
YS17 is needed, which can predict the later second 
arrivals as in data [Sun et al., 2009]. 


