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1. Introduction 3. Model Parameterization 4a. Why a Bayesian approach? (cont)
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the plate interface that is consistent with a priori information (e.g. igure 2: Model parameterization and Geometry of the Nz - Sa Plate Interface. : i . .y .
. ke of back-sl; 1abl : ’ 4s Similar GPS velocity predictions 1 | _ Colormap Indicates s (a) Synthetic case. The plate interface is coupled from the trench depth up to 50 km depth. Green arrows are the syn-
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Coupling along the plate interface 1s characterized by two interpolated
curves at depth, the upper and lower boundaries of the coupled zone, The two cases can be considered as viable solutions of the problem, since the prediction of both models explain

defining a mask in which the plate interface is coupled in the region equally well the GPS velocities, suggesting big uncertainties in the location of the coupled zone. Here we note the

enclosed by these curves (yellow area) and uncoupled outside it. importance of estimate the whole range of possible values for the model parameters, i.e., to properly sample their 67 ReSllltS and DiSCllSSiOn )
We use aback-slip model (Savage, 1983) to represent the inter-seismic uncer.tainties. The, Bayesian ap .proach allow§ us to compute sugh uncertaipties n 4 form of 4P r(?bability density | 1 We obtain a posteriori estimates of Pc using the GPS velocities shown in Figure 1. Recall that wherever Pc 1s close
strain accumulation at the plate interface, where a constant back-slip rate function (PDF) without assuming any functional form for the PDF and without prior regularization. Instead ot a |}, 5 (erayish color) it means that the model is poorly constrained in that region. When Pc is close to 0 it means

is imposed at the coupled zone. We ignore the possible existence of any single solution to the inverse problem, we consider the entire PDF (thousands to millions sampled models). In the that the probability for such point to be uncoupled (Pu) is close to 1, since Pu = 1 - Pc.

Jollowing, we explain how we represent this ensemble of models. J The higher anomalies for the probability of coupling (Pc > 0.8) are mainly located off-shore and above 40-50

More generally, the Bayesian approach adopted here i1s applicable
to any region and eventually would allow one to evaluate the spatial
relationship between various inferred distributions of fault behavior
(e.g., seismic rupture, postseismic creep, and apparent interseismic
coupling) in a quantifiable manner.

Red-brown colors (Pc > 0.75) indicate a high Coupling Probability and since our parameterization does not allow partial coupling,
()lue-black colors (Pc < 0.25) indicate a high probability for that point of the plate interface to be uncoupled (1 - Pc > 0.75).

We apply this methodology to evaluate the state of apparent inter-
seismic coupling in the Chilean-Peruvian subduction margin (12°S

transition zones. Plate convergence 1s represented by motion of a rigid
— 25°S). As observational constraints, we use previously published plate on the sphere (Cox and Hart, 1986), with an Euler vector taken from f4b ) C Oupling Prob ability (PC) Y km depth, which 1s in agreement with the conclussions of Tichelaar and Ruff [1993] in a study that characterizes the

the REVEL model (Sella et al, 2002). A finite dislocation in an elastic
half space (Okada, 1985) is used to generate Green’s functions. The We need to represent statistically a given ensemble of several million models. We could compute the mean or
T AR E R s e ST IS S € 0 N IV Rw ettt ll | | median model among a percentage of the best suited sampled models. But we can not say for sure that the mean not be interpreted directly as the configuration of asperities or coseismic slip region, since late in the seismic cycle,

with independent sets of geophysical data. or median model 1s 4 viable model anq, in the worst case, it may not even be a solution of the inverse problem ot the inferred apparent coupling may reflect the stress shadows sourrounding those asperities. (Hetland and Simons
Free parameters of our model are the depth of the interpolation knots | |REMREY! make physical sense. To avoid these complications, we represent the ensemble of models by computing (20107])

ST R R o R R A g R e R A R R IR S ol | | the probability of coupling for each point 2 at the plate interface (Pc) from all the sampled models.

maximum locking depth of the subduction interface by an analysis of the seismicity of the region.
Note that in regions with high probability of coupling, this probability remains high up to the trench. This must

horizontal velocities from campaign GPS [Kendrick et al., 2001,
2006] as well as 3 component velocities from a recently established
continuous GPS network in the region (CAnTO). We compare results
from both joint and independent use of these data sets. We obtain patch

like features for Pc with higher values located above 60 km depth.
We identity a strong correlation between the features of high Pc and We compare Pc against the co-seismic slip distribution of earthquakes in the region. Pisco (M8.0) 2007 and
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