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                               Source Properties of the January 2010 M7 Haiti Earthquake Estimated by Back Projection of Waves Recorded 
                                                            by the National Seismic Network of Venezuela and the  USarray  
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Back projection of teleseismic waves based on array processing has 
become a popular technique for earthquake source inversion. By tracking 
the moving source of high frequency waves, areas of the rupture front 
radiating the strongest energies can be imaged. The technique has been 
previously applied to track the rupture process of the Sumatra earthquake 
and the supershear rupture of the Kunlun earthquakes. The challenge with 
the 2010 M7.0 Haiti earthquake is its very compact source region, possibly 
shorter than 30km. Preliminary results from back projection using US-Array 
or the European network reveal little detail about the rupture process. In 
this study, we made an effort towards imaging the Haiti earthquake using 
multiple seismic array networks, including the USArray and the National 
Seismic Network of Venezuela run by FUNVISIS. The FUNVISIS network 
is composed of 22 broad-band stations with an East-West oriented 
geometry, and is located approximately 12 degrees away from Haiti in the 
perpendicular direction to the Enriquillo fault strike. This is the first 
opportunity to exploit the privileged position of the FUNVISIS network to 
study large earthquake ruptures in the Caribbean. We applied back 
projection methods based on traditional stacking and signal subspace 
techniques, and we incorporated Green's function deconvolution in the 
array processing. The preliminary result is encouraging: we observe an 
east to west rupture propagation along the fault, consistent with a compact 
source and rupture propagation at subshear speed. These efforts could 
lead the FUNVISIS seismic network data to play a prominent role in the 
timely characterization of the rupture process of large earthquakes in the 
Caribbean, including the future ruptures along the yet unbroken segments 

Classic back projection

Classic back projection is closely related to the standard array beamforming technique, 
which uses a set of time-delays corresponding to the direction of plane wave arrivals to shift 
and stack the signals from sensors to obtain the spectrum of energy radiation of all 
directions. In classic back projection, the time shifts are arrivals of hypothetical sources 
calculated from a velocity model. The seismograms are then shifted back and stacked to 
located the asperity in the source region much like the principle of seismic migration in 
exploration seismology. The seismograms are first aligned by the initial P arrivals to account 
for perturbations of the arrival times due to 3D structural 

Multiple signal classification(MUSIC)

As an effort to improve the resolution of beamforming, the Multiple signal classification 
(MUSIC) has been developed to estimate the source location based on the data covariance 
matrix using an eigenspace projection method. The method assumes the signals are 
composed of multiple waves arriving from different direction plus Gaussian white noise. The 
direction of arrivals can be resolved through eigenvalue decomposition of the data 
covariance: the eigenvectors corresponding to the largest eigenvalues span the signal 
subspace, while the rest of the small eigenvectors span the noise space. A steering vector, 
which is a set of complex phase shifts as a function of frequency, sensor locations and signal 
direction, should be orthogonal to all the noise eigenvectors. The direction of arrival is then 
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Comparison of the 
MUSIC and 
beamforming 
techniques on the 
direction of arrival 
analysis of the 
capability of separating 
closed spaced sources.
two synthetics are 
impinging the a linear 
array.As their azimuth 
difference decreases. 
the two methods shows 
different ability of 
separating them. in this 
example music has 
resolution to 2 degree 
while the beamforming 
can not separate at 8 
degree. 

We  test the performances of the two algorithms by assume two point sources located East from the epicenter along the fault plane with various 
seperation in distances(25 to 50 km) and in time(assuming a 3km/s constant rupture speed). The focal mechanism is 259/64/26 (strike/dip/rake) 
with a depth of 13km. The source time function is a Brune function with a duration of 3 seconds. For the classic back projection the data is filtered 
to 0.25 to 1 Hz, while in the MUSIC test the data is analyzed at 0.3 Hz. Due to the frequency band averaging In the Mulititaper spectrum 
estimates, we use a  60sec long window to reduce the bias. the Music tends to have sharper source image and it gives better seperation of 
closed spaced sources(15km). The source location along the source-array direction is poorly constrained due to the limitation of the array 
geometry, but here we can constrain the source to lie along the known fault trace.The amplitude systematic bias is still existing due to the 
interference of the sources and this effect is more prominent when the sources are close,but the position which contrained by the white dots are 
quite well resolved. 

Source time function back projection of the USarray network

One of the challenges we encountered in the analysis of the Venezuela data is the waveform complexity due to the regional crustal phases. Since seismograms are generated by the convolution 
of the source time function by the Green's function. Ideally, long time windows are required to include the full waveforms from each asperity. However, such scenario is usually unlikely to be 
achieved due to the simultaneous arrival of waves from several asperities. One possible solution is to apply back projections to the source time functions derived by deconvolution of array 
recordings by synthetic or empirical Green's function. To achieve better robustness, we analyze teleseismic recordings from the USArray, which have relative simple and coherent waveforms 
compared to the regional recordings. 
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National network of Venezuela 
The National Seismic Network of Venezuela is maintained by the 
Fundaci¨®n Venezolana de Investigaciones Sismol¨®gicas (FUNVISIS) 
and is composed of 22 broad-band stations with an east-west oriented 
geometry, located approximately 12 degrees away from Haiti in the 
perpendicular direction to the Enriquillo fault strike. The Rayligh criterion 
for array resolution indicates that source location uncertainties for classic 
beamforming (location error ~ epicentral distance * wavelength / array 
aperture) are expected to be of order 10 km. This suggests the 
FUNVISIS network can provide marginal resolution for a 30km source in 
Haiti if classic beamforming analysis is applied, and warrants exploration 
of higher-resolution array techniques like MUSIC.

Time domain deconvolution

We caculated synthetic Green's function using 
generalized ray theory. The source time function 
is then obtained by the iterative Kikuchi-Kanamori 
deconvolution technique.(Chu, 2009) or by a non-
negative least-squares deconvolution. The two 
methods show very similar source time function 
indicating relative robustness.
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Back projection of the 
source time function

TThe source time functions indicate 
two prominent asperities at about 5 
and 8 seconds after the origin time. 
We apply classic back projection 
with 5 second windows centered at 
these two asperities. We find again 
that the two asperities are located 
West from the epicenter. The 
location uncertainty in the source-
array direction is smaller than in the 
Venezuela data. However the 
location of the first asperity seems 
to be too far away from the 
epicenter to obey causality. This 
technique has to be further explored 

Conclusions

Synthetic test

To understand the performance and potential bias of the back projection using the Venezuela network we test the two algorithms by 
synthetics. We compute the full wave field synthetics using a Frequency-Wavenumber (FK) method (Zhu 1996). We test scenarios with a 
fixed source case and a moving source with multiple asperities. The synthetics are first aligned with the initial P arrival. The two proposed 
back projection techniques are then applied.
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Abstract
Back projection of the Haiti earthquake by the Venezuela network

Back-projection of regional and teleseismic seismic data from the Venezuela seismic network and 
the USArray reveals the existence of two asperities in the source process of the Haiti earthquake 
and the rupture directivity towards the West. 

Application of a subspace method (MUSIC) yields a sharper source image than classic beamforming. 

We also developed a new technique that incorporates Green's function deconvolution into the 
back-projection frame. The result is encouraging: the method is able to isolate asperities 
temporally.

There are still systematic bias in the analysis that should be improved in order to implement these 
techniques in real time, waiting for the next large earthquake along the Enriquillo and the 
Septentrional faults. The next position of the USArray will actually be more favorable to reduce the 
bias in a joint (USArray-Venezuela) array processing approach.
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Data selection 
Since the epicentral 
distance of the network 
ranges from 7 to 15 
degrees , the initial P 
arrivals are dominated 
by the crustal Pnl 
complications which vary 
significantly as a function 
of distance and back-
azimuth. To maintain 
reasonable coherence 
within the data set we 
selected a subset of 
stations (Green) with 
multi-channel correlation 
matrix reordering 
technique in the 0.2 to 
0.5 Hz band.
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We apply both methods on 
the actual recordings of Haiti 
earthquake by the Venezuela 
network with both long 
window(60s) and short 
window(10s). Both algorithms 
indicate two prominent 
asperities to the west of the 
epicenter.In the short window 
case the two asperities tends 
to dominent different time 
windows, while the long 
windows give more robust 
location. As expected the 
music gives more clear 
separation in the source 
image.
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