

Bayesian Inversion of Finite Fault Models Using Open Ocean Tsunami Waveforms for the 2007 M_w 8 Pisco, Peru Earthquake

Junle Jiang, Anthony Sladen, Sarah Minson, Mark Simons Geophysics, Division of Geological & Planetary Sciences, Caltech

Tsunami Model COMCOT (Cornell Multi-gridded Coupled Tsunami Model) (i) Seafloor deformation (Okada, 1985); (ii) Shallow water wave propagation.

Synthetic Fault Plane

2-D flat fault plane defined by the location of trench and hypocenter (Fig. 4)

Fig. 4 2D fault plane for synthetic data Strike: 318° Dip: 16° Rake: 63°

> Prior Information $U_{\parallel} \in \text{uniform } [\text{Umin}, \infty];$ $U_{\perp} \in \text{normal} [0, \sigma], \sigma \sim 0.5 \text{ m}$ initial U_{II} constrained by M_{II}

Fig. 5 Inversion results for synthetic models with different lengths of Markov chains and numbers of sampling models (prediction error: 1cm)

distribution for the 5 tsunameters. Arrival times of tsunami waveforms are also shown

Inversion for Synthetic Models

Model Resolution

Tsunami waveforms constrain up-dip slip well, and yet down-dip slip poorly, as is clearly shown in the posterior distributions of sampled models (Fig. 5 & 6)

Fig. 6 Initial distribution (blue) and posterior distribution of parallel-rake slip on each patch of the fault plane. Target values of the synthetic model, mean and median values of posterior distributions are marked as black, green, and blue lines

Comparison: Inversion of Synthetic InSAR data for the same model

InSAR data constrain down-dip slip much better with all 6 synthetic interferograms (5 times more data than tsunami records), still unable to well constrain offshore part of the fault

Joint Inversion

Tsunami waveforms provide complementary constraint on slip on the off-shore part of the fault

Conclusions and Future work

Conclusions: (1) Open ocean tsunami waveforms that are initiated by a megathrust earthquake can be used to rapidly invert for the static slip on the fault. (2) By means of Bayesian sampling, we can obtain a posterior distribution of finite fault models for the 2007 Mw 8 Pisco, Peru earthquake, providing us with a probabilistic description of earthquake source characteristics. (3) By the measure of KLID, we can see the intrinsic model resolution for tsunami waveforms, which, contrary to InSAR data, constrains up-dip slip better than down-dip slip on the fault.

Future work: (1) Incorporation of real InSAR data; (2) Inversion for kinematic models; (3) further posterior analysis Acknowledgement to Gordon and Betty Moore Foundation

Kullback-Leibler Information Divergence Distances of the posterior distributions from a uniform distribution, also a measure of information gain during the sampling process (1 corresponds to perfect peak)

Fig. 7 KLID for the posterior distributions on the left, marked with the approximate location of shoreline