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3.1 Pulse-like Ruputure 1. Motivation 3.3 Implication for Low-velocity Fault Zone

Earthquake ruptures are believed to propagate predominantly as self-healing pulses yet

Rupture Propagation on the Fault Plane the dynamics of these pulses 1s not completely understood: what controls their rise time

Slip Rate vs Space at 10 time interval and rupture and healing speed? Moreover, low-velocity fault zones (LVFZ) are found 1n Host Rock
* most mature faults. Here we explore the effects of LVFZs on slip pulses. We first
200 2 - assumed the host rock 1s very rigid so that the boundary of the LVFZ behaves like a fixed /
S displacement boundary. The problem reduces to a 2D elastic slab of finite thickness. Slip
% pulses are generated naturally by waves reflected on the fault-parallel slab boundaries. )
o 150} | The slab thickness also affects the rupture speed, slip, slip rate and rise time. We then Low-velouty Fault Zone
_— A | | 1] study the case of a finite velocity contrast between LVFZ and host rock. We found that
3 Space/ Lc for large enough contrasts the waves reflected from the boundary of the LVFZ can heal Host'Rock
. the slip. This 1s a new mechanism for the generation of rupture pulses (short rise time).
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. . . . . . . . The model 1s calculated using SEM2DPACK (Ampuero, 2002), a spectral element =3
SHp Rate vs Space at 10 time Inferval method code for 2D wave propagation and rupture dynamics. Infinitesimal strain and L ol
B linear elasticity are assumed in current stage. The fault 1s governed by slip-weakening. To
200 | § i nucleate the rupture, time-weakening 1s superimposed. We exploit the symmetries of the
2: elastic problem to restrict the computations to the top-right quarter of the domain. We 10F -
2 used normalized quantities: x=x/L_, t=t/(L_/v,) where L .=GD_/(c,(1-}y)), G is shear /
o 1501 | - modulus, D, 1s critical slip, o, 1s normal stress, p, 1s static friction coefficient, p, 1s
f | H L[ | dynamic friction coefficient and v 1s shear wave speed. ° 10 20 30 40 50 60 70 80 90 100
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3 //- é’ _ O Above: Pulse-like Rupture Propagation generated by boundary of low-
% ; 2 — % \.zeloczly fault zone of 40 percent velocity reduction for antiplane (top) and
ol - L = 3 of Y W 2 inplane (bottom).
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Space / Le can also generate slip pulses due to reflected waves from the boundary.
. _ _ o _ . _ . This 1s 1n contrast to results by Harris and Day (1997). We are working
Above: Pulse-like Rupture Propagation for antiplane shear, subshear to Above: Rupture speed, rise time, final slip and maximum slip rate for different slab

. . . on linking our numerical simulations to the complexity in observations.
supershear transition and supershear (from top to bottom). thicknesses for antiplane shear rupture.



