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Some recent studies have pointed out to a possible correlation between forearc topography and seismic asperities on megathrust (Song and
Simons, 2003; Wells et al., 2003). This correlation suggests that the morpho-tectonic zones could reveal spatial variations in frictional properties of ‘ Arauco Peninsula ' a r'a‘re-s’rr'eng’rhening barrier ? '
megathrusts. One possible cause would be that the effective friction along megathrust depends on the mode of slip: it would be lower in seismic

asperities area due to dynamic weakening during seismic rupture, and larger in area dominated by rate-strengthening friction. In order to assess
this correlation, a systematic study of a number of subduction margins has been conducted. The objective is to highlight common features asso- Comparison of the extent of the criticality with
ciated to seismic or aseismic areas and weakly or strongly coupled areas and to establish if they can be linked to frictional properties. Forearc to- Maule 2010 earthquake slip
pographies and slab geometries are studied based on the critical taper model and on the limit analysis theory. This theory, which is based on the 755\ 755\
mechanical equilibrium and the theory of maximum rock strength, allows predicting forearc deformation based on the megathrust geometry, fo- , , -

rearc topography and frictional properties. More general than the critical taper model, it can be used to retrieve the effective friction on the me-
gathrust, and its eventual variation in space from the localization of active faults.

Thrusts and strike-slip faults described Retrieving basal frictions from the modelisation of the Santa Maria fault thrust
by Melnick et al. 2006 and Melnick et al. 2009 :

with the limit analysis theory :

Numerical external approach of the limit analysis (Souloumiac et al., Comp. Geosc. 2010)
used to find the basal frictions reproducing a thrust fault at the same localization
and with the same dip as the Santa Maria thrust fault.
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