
A. GPS and modeled horizontal displacements
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B. Afterslip model h= 15 km

−60

−30

0

30

−60 −30 0 30

lae1
lae2
lae3

lae4

law1

law2law3
law4

meek

olddoldw

rich sanh

x 1
 (

km
)

−3 0 3 cm

GPS (up)

C. Crème brûlée linear model H = 40 km
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D. Poroelastic rebound model

A. Dominant mode of viscoelastic LOS deformation
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Geological interpretation & Concluding remarks
Our results imply relaxation in a shallow ductile layer, be-
tween 25 and 30km depth, coincident with the Moho discon-
tinuity. The lower-crustal �ow is separated from the mantle 
�ow below 50km by a 20km-thick competent layer at inter-
mediate depths. Assuming a constant shear modulus of 
30GPa, the model implies similar viscosities in the lower and 
mantle of 3.5E18 Pa s. Given the resolution of the inverse 
problem, the inference of a weak lower crust is robust, but we 
cannot rule out more gradual variations of viscosity as these 
models still o�er reasonable �t to the geodetic data sets. A 
contribution of afterslip may bias our preferred viscoelastic 
model towards a lower viscosity but our inference of a viscos-
ity pro�le characterized by two low-viscosity horizons in the 
lower crust and upper mantle is little a�ected by the presence 
of shallow afterslip.
Using InSAR and GPS data from the post-Landers and post-
Hector Mine epochs, we constrained lateral variations in vis-
cosity below the Mojave Desert. Data require a low-viscosity 
anomaly to the South-West of the Landers rupture, towards 
the San Andreas Fault. Tomography of the viscous structure 
indicates a thickening of the shallowest ductile stratum near 
the San Gabriel segment of the San Andreas fault coincidental 
with the deepening of the Moho at this location. Our results 
indicate that the Moho might mark not only a strong elastic 
boundary, but might also delineate a strong viscosity contrast 
between mantle and crustal material. This view is consistent 
with constraints of the continental lithospheric strength from 
laboratory experiments.

The presence of a weak lower crust is supported by the presence of rock with low- to intermediate-
temperature activation creep, such a quartzites, granites or diabase and diorite. Mantle rocks, such as 
olivine, are characterized by a higher-temperature activation creep so that there is a strong decrease in 
viscosity with depth. The temperature dependence of viscosity leads to the division of the upper 
mantle into a competent (high viscosity) upper layer below 
the Moho and a weaker substrate at depths greater than 
~50km. A number of geologic and geophysical constraints 
when considered together resolve a lithospheric structure be-
neath the central Mojave region that is consistent with the �u-
idity and inferred viscosity pro�les. 

Regional S-wave receiver function analysis 
resolve a relatively sharp asthenosphere- 
lithosphere boundary at ~65km with 
sharpness <20km [Li et al., 07].  Regional 
P-wave receiver function analysis resolves a 
sharp Moho beneath the region at ~30km 
[Yan & Clayton, 07]. Petrogenetic data on 
mantle xenoliths that were entrained in late 
Cenozoic volcanic rocks of the region, fur-
ther constrained by surface heat �ow data, 
resolve mantle lithosphere peridotites be-
tween ~30 and ~50km that are consider-
ably cooler than peridotite xenoliths en-
trained from asthenosphere depths [Lu� 
et al, 09]. Crustal basement rocks typical of 
the central Mojave region are exposed to 
lower crustal levels around the periphery of 
the Mojave Desert as a series of core com-
plexes [Saleeby et al., 07]. These exposures 
show that the crust is quartz bearing and 
hydrous to 30-35 km depths, and thereby 
capable of �uid behavior under lower 
crustal conditions.

Yan & Clayton, 2007

Lu� et al, 2009
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Motivations

Jelly Sandwich vs Schizosphere end-member models: A strong trade-o�

We investigate the transient deformation following 
the 1992 Mw7.3 Landers and the 1999 Mw7.1 Hector 
Mine earthquakes (Mojave desert, Southern Califor-
nia) using a combination of GPS and InSAR for an 
interval spanning 1992 to 2010. We test the possible 
mechanisms of postseismic relaxation using 
physically-based time-dependent models of defor-
mation driven by coseismic stress changes. Consid-
ered mechanisms include viscoelastic �ow in the 
lower crust and upper mantle, afterslip governed by 
a rate-dependent friction, and poroelastic rebound. 
We �nd that both afterslip and viscoelastic relaxation 
models can explain the horizontal post-Landers GPS 
data equally well. Afterslip however gives rise to ver-
tical displacements of opposite polarity to the ones 
measured by GPS. A viscoelastic model marked by a 
strong (high viscosity) lower crust and weak (low vis-
cosity) upper mantle transitioning at a depth of 
40km gives rise to large wavelength LOS deforma-
tion in the near �eld which is not observed in the 
InSAR data. Poroelasticity models are consistent with 
wavelength of InSAR LOS displacements and cam-
paign GPS vertical data, but cannot explain the azi-
muth and amplitude of horizontal displacements. 
None of these simple models can explain all the 
available geodetic measurements simultaneously 
and a more complex explanation is required, involv-
ing either multiple mechanisms or more spatial 
variations in material properties.

Freed et al (2007) showed that a scenario of afterslip 
after the 1992 and 1999 Mojave earthquakes led to 
signi�cant mis�t at most GPS stations, but afterslip as 
a single driver of the postseismic transient is also ruled 
out by the anti-correlation of predicted and observed 
vertical displacements. The question of the possible 
contribution of afterslip in a predominantly viscous-
�ow-driven transient remained. We consider a simple 
scenario with only ductile �ow in the asthenosphere 
below a depth H. A deeper transition to viscous �ow 
implies a dramatic amplitude decrease of near-�eld 
and far-�eld displacements. For comparison, we 
evaluate the postseismic response to the same �cti-
tious event considering a scenario of rate-strengthen-
ing creep in a plastic zone from the bottom of the seis-
mogenic zone h=15km transitioning to distributed 
viscous �ow at depth H, the so-called schizosphere 
model. We assume similar relaxation time scales for 
creep and viscous �ow. The patterns of horizontal dis-
placements are virtually indistinguishable from the 
ones predicted by viscoelastic �ow alone. The vertical 
displacements however are quite di�erent, with a 
near-�eld vertical displacement dominated by after-
slip in the far-�eld one dominated by the viscous �ow. 
In principle the mechanisms may be discriminated 
with the near-�eld data.

Inversion of the inelastic properties of the subsurface has 
often relied on minimizing a mis�t function by a numeri-
cally costly exploration of a parameter space, which is 
kept small due to computational limitations. The method 
of data reduction by exploration of a model space is justi-
�ed because no single deformation mechanism is self 
similar, even with a linear rheology, leading to time series 
of surface displacement that are not separable in space 
and time. We challenge this idea by showing that time 
series of viscoelastic or afterslip surface deformation are 
dominated by a time-space separable component. A 
similar result holds for afterslip assuming steady creep. 
For these mechanisms, the second mode of deformation 
is negligible compared with noise in InSAR due to atmo-
spheric delays and uncertainties in forward models of de-
formation caused by approximations in the numerical 
quadrature. It follows that for inversion purposes one 
may consider that forward models of afterslip and visco-
elastic relaxation are separable in space and time to a rea-
sonable degree of approximation. For complete poro-
elastic rebounds, the spatial distribution of deformation 
is identical for all values of poroelastic coupling, and only 
the amplitude of  the deformation varies. 

Analysis of post-Landers Insar data
We exploration the possible models that can explain the post-Landers InSAR data alone, we �nd that some 
afterslip may take place on the downward extension of the coseismic rupture, in combination to viscoelastic 
�ow at greater depths. A more plausible mechanism, however, is viscoelastic relaxation in the lower crust and 
upper mantle, with no or little contribution from fault creep in the time interval considered. All model consid-
ered (either viscoelastic or schizosphere models) give rise to better variance reduction if a poroelastic 
rebound is also accounted for. Inference of a viscosity pro�le for all scenarios di�er principally by the required 
viscosity of the lower crust, with a lower-crust viscosity about one order of magnitude higher in the model 
including poroelastic rebound. One feature that persists in all inversions is the geometry of the viscous �ow. 
All models require �ows in the lower crust and in the upper mantle separated by a competent layer below the 
Moho. The presence of a mantle lid between the lower-crustal and the deep upper mantle �ows is the pre-
ferred model but models that assume more gradual variations in viscosity as a function of depth still give rise 
to reasonable variance reduction of the geodetic data. 

The best-�tting model implies a combination of poroelastic rebound in the entire lithosphere accom-
panied with viscoelastic �ow in the lower and the upper mantle. Yet, other models that give rise to 
somewhat less variance reduction of the geodetic data may still be valid explanation of the postseis-
mic relaxation. In particular, another viable model implies deep afterslip on a down-dip extension of 
the rupture fault that transitions to viscoelastic �ow at greater depth, with a wide-spread poroelastic 
rebound in the entire lithosphere. If the assumption of the presence of sharp variations in viscosity is 
veri�ed, all models imply the presence of a mantle lid below the Moho, corresponding to a jelly-
sandwich strength model of the lithosphere. The e�ect of other mechanisms on the inferred strength 
of the lithosphere is to increase the lower-crustal viscosity compared to models that imply viscoelas-
tic �ow alone.

Analysis of post-Landers and post-Hector Mine Insar and GPS data: Evidence for Jelly-Sandwich lithosphere & poroelastic rebound

Resolution on inelastic properties
For the 1992-1999 time interval, InSAR and campaign GPS 
o�er similar resolution, with a clear capacity to constrain the 
�uidity of the most shallow ductile stratum and that of the 
deepest substrate. At intermediate depths however, the reso-
lution on �uidity is quite poor, with values decaying from 
R=50% to R=5%. The low resolution of post-Landers InSAR 
data explains the numerous tradeo�s between possible 
models. For the post-Hector Mine epochs the InSAR Green 
function includes elements from the viscous relaxation of the 
Landers and Hector Mine ruptures and one important e�ect 
is to signi�cantly improve the resolution on the second-most 
shallow layer. In the post-Hector Mine epoch the GPS Green 
function includes more numerous stations with an increase in 
spatial coverage that leads to an improve resolution of the 
�uidity structure at intermediate depths. We performed the 
same analysis including poroelasticity in the design matrix. 
We found that the contribution of poroelasticity for both the 
Landers and Hector Mine periods is well constrained, with a 
resolution of 99.9% without important e�ects on the �uidity 
resolution except for the two deepest thin ductile layers.

Jelly Sandwich vs Schizosphere end member models
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A. Example Green functions for inversion of Mojave-mantle viscosity (25-30 km ductile layer)
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We compare the time series of continuous GPS data in the period following the 1999 Hector Mine earthquake. sThe vari-
ance reduction of the cumulative post-Hector Mine GPS displacements are 81.5%. Similarly, about 20% of all stations 
show some mis�t between forward models time series and observed displacements. For those stations that do not exhibit 
mis�t at the tail of the time series, the model explain the displacement in the entire time interval successfully. It is quite 
remarkable that the viscoelastic model, with only seven degrees of freedom and only two low-viscosity layers can explain 
so various data sets including spatial variations of LOS displacements, campaign GPS and continuous GPS data.


