
Abstract
 Fluvial terraces hold clues for inferring landscape history, including river response 
to climate, tectonics, base level change, and the intrinsic instability of meandering 
streams. Terrace geometry offers a potentially valuable avenue for distinguishing 
these genetic mechanisms, both in the field and in theoretical models. However, field 
mapping is time-consuming and terraces are inconsistently noted on geologic maps. 
Where terraces are mapped, the maps must be digitized and combined with digital el-
evation models (DEMs) to extract comprehensive morphologic information. More-
over, limited methods exist to quantitatively compare terraces generated in computer 
models. To address these shortcomings, we have developed a largely automated 
method to detect river terraces in DEMs. The algorithm utilizes slope and curvature 
criteria, as well as local elevation of landscape elements with respect to nearby chan-
nels, to distinguish terrace areas. Localizing these areas enables extraction of a vari-
ety of topographic metrics. The algorithm can identify terraces in a variety of physio-
graphic environments, including along the Mattole River, California, and the Le-
Sueur River, Minnesota. In addition to its utility as a mapping tool, the terrace detec-
tion algorithm allows rapid comparison of terraces using widely available topo-
graphic data, which may reveal underlying patterns in river terrace formation.

Motivation
 Fill and strath terraces are ubiquitous in river systems worldwide in a variety of tectonic 
and climatic environments [1-2], and serve as rare surface archives of drainage basin his-
tory. While most commonly interpreted to record drainage basin response to climate change 
[1-2, and references therein], river terraces are also likely to form in response to changes in 
base level due tectonics [3-5] and sea level [4,6], and due to intrinsic properties of meander 
growth and stream migration [e.g., 7]. Although terraces may be vitally important for inter-
preting millennial-timescale watershed history, disentangling the potential drivers for their 
formation remains a formidable task. We posit that terrace geometry offers a potentially 
valuable avenue for distinguishing genetic mechanisms, both in the field and in theoretical 
models.
  Terraces are difficult to map in the field and time-consuming and subjective to map 
manually using topographic data (Fig. 1). In the case of computer simulations, few tools 
currently exist to identify and compare river terraces made in different models. We are 
aware of one existing semi-automated terrace detection algorithm, which generates longitu-
dinal profiles of terrace pixel detections [8]. While such profiles are commonly used to infer 
changes in river slope through time, particularly in tectonics studies, this can lead to spuri-
ous terrace correlation [4]. Moreover, extracting metrics inherent to individual terraces re-
quires methods to group terrace pixels based on adjacency in three dimensions. 
 To address these shortcomings, we have developed a largely automated algorithm to 
detect and quantitatively characterize river terraces in digital elevation models, using a lim-
ited number of empirical thresholds. The new method reduces errors in measurements of 
terrace elevation with respect to the channel inherent to an existing method [8], and through 
a graphical interface, allows the user to interactively tune the detection algorithm.
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Algorithm
 Using widely available National Elevation Dataset 1/3 arc second (~10 m in contental US) 
DEMs, preliminary tests have shown the algorithm to compare well with independently 
mapped terraces.  Terraces are identified through the following process of elimination:

1. Crop DEM to study location and define stream centerline.
2. Identify regions with high density of pixels with high slope and curvature.
3. Assign each pixel a reference elevation corresponding to a nearby channel reach,
  using a steepest descent algorithm (Fig. 2).

 
4. Produce inundation maps for different floodplain levels above the local channel
 elevation (Fig. 3); user selects one.

5. Mask pixels that exceed slope or curvature thresholds, or do not exceed the local
 floodplain level (Fig. 4).

6. Classify groups of pixels that exceed a critical area as terraces (Fig. 5).

7. Extract morphologic information, including number of terraces, terrace area, mean
 elevation, slope and slope azimuth, width and length (approximated using a bounding 
 ellipse), and surface roughness.

Preliminary results and ongoing work
 We are testing and improving the terrace detection algorithm in several locations, 
spanning environments with a large range of relief, rock type, and channel lateral and 
vertical erosion rates. Moreover, sites span a variety of tectonic settings, from the Texas 
Gulf coastal plain which experiences slow, progressive uplift, to terraces made in more 
active tectonic settings such as coastal California. In ongoing work at these sites, we en-
deavor to identify the primary drivers of terrace morphology. Figure 7 shows an ex-
ample of orientation data gleaned from terraces along the LeSueur River.  While most 
terraces dip west or east, comparison to valley trend shows that almost all terraces dip 
orthogonal to the valley axis. Because terraces in the region appear to have been aban-
doned by a series of migrating knickpoints following sudden baselevel fall [10], vertical 
erosion would be expected to have occurred in distinct phases. This would leave flat-
topped terraces with steep risers. Our preliminary findings instead suggest that enough 
vertical erosion occurred during lateral bevelling of the terrace tread to result in a tread 
sloping perpendicular to the valley. In continuing work, we will investigate a variety of 
other metrics and compare results between sites where potential controlling factors (e.g., 
average rock uplift rate) can be constrained.

Conclusions
• Limited tools exist for automated terrace detection and morphometry.
• New algorithm identifies terraces with enhanced precision and reduced 
 subjectivity using widely available topographic data. 
• Algorithm works in areas of high and low relief, and can extract a variety of
 metrics related to terrace size, frequency, and orientation.
• Different forcing mechanisms may produce distinct geometries; once these  
 links are known, the inverse problem could aid in distinguishing drivers of 
 terrace abandonment and elucidate watershed responses to climatic and 
 tectonic controls.
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Figure 3. Modeled channel and floodplain along a portion of the Mattole 
River, California. Blue shaded areas correspond to pixels with elevations 
within the floodplain threshold, which equals the local channel elevation 
plus an additive constant. Local channel elevation for each pixel is deter-
mined using a path of steepest descent. (A) Floodplain 2 meters above local 
channel elevation; (B) 6 meters; (C) 10 meters.
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Figure 2. Illustration of steepest descent algorithm. Green 
polygon denotes buffer around Mattole River; warm 
colors indicate higher topography. Test points (white) are 
chosen, and a path of steepest descent is followed (black) 
until intersection with the channel buffer (green).

Figure 6. Detected terraces, LeSueur River, Min-
nesota. The surrounding low-relief areas caused 
false detections as terraces; however terrain flat-
ness was exploited by filtering out all pixels above 
a threshold elevation. Despite river slope, the ter-
races are all inset below the surrounding plain.

Figure 5. Terrace areas, shaded yellow, iso-
lated from topography. Spurious detections 
can be removed manually using a graphical 
interface.

Figure 4. (A) Input topography; (B) Areas exceeding slope and curvature thresholds 
excluded (black); (C) Areas below local floodplain elevation excluded (black); (D) 
Remaining areas (white) treated as potential terraces.
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 The terrace extraction algorithm functions most effectively in high-relief areas, where low 
terrace slope and curvature makes them distinct from surrounding hillslopes. In low-relief areas, 
utilizing a threshold elevation can aid in removing surrounding terrain (Fig. 6). False detections 
can be removed directly within the graphical user interface.

Figure 1. Fill terrace mapped 
along the North Fork San Ga-
briel River, California [9]. 
Mapped terrace includes por-
tions of terrace riser and adja-
cent hillslope, which may intro-
duce significant error to orienta-
tion calculations.
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Figure 7. Terrace orientations along the reach of the LeSueur River shown in Fig. 6. (A) 
Dip direction. (B) Angle between terrace dip direction and the local, downstream-
oriented valley centerline vector. The majority of terraces dip orthogonal to the valley 
trend (90 and 270 degrees).


