Aftershock Seismicity of the Mw 8.8 Maule Earthquake of 27 February 2010 Using a 2D Velocity Model
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1) Introduction 3) 2D locations of the Maule aftershocks 5) Crustal seismicity
On 27 February 2010 a magnitude 8.8 earthquake occurred along the sub- We have carried out an analysis of the combined IRIS, French, GFZ, and
duction zone in central Chile, rupturing a 350 km long section of the dip- Liverpool datasets, which cover in time the first two deployment months 21/03 - 09/04 10/04 - 29/04

72 ’ —75°

ping fault interface. The southern part ruptured previously in 1835 during (end of March to beginning of June). More than 100,000 seismic events
the M 8.5 Concepcion earthquake and the northern part ruptured in 1906 can be identified based on an association threshold of at least 6 P wave
during the Mw 8.5 Valparaiso event. Immediately after the earthquake arrivals. Since most of the seismicity is located offshore, automatic loca-
struck, a coordinated multinational effort took place to capture in great tions based only on P wave arrival times have poorly-constrained depth
detail the aftershock activity. In total ~160 seismic stations were deployed estimates. We therefore used an iterative approach to increase the
by Chilean, French, USA, UK and German institutions, making this one of the number of P wave arrival time picks, to obtain additional S wave arrival
best-observed aftershock sequences of a megathrust earthquake to date. times, and in the same step to increase the accuracy of the automatic
Here we present earthquake locations based on STA/LTA triggering and a picks. Random manual checks were carried out to optimize the process-

newly-developed event association algorithm based on a backward time ing parameters. Here we present ~18,000 events, in the time period
migration approach. 15/03/2010 - 24/05/2010, which have at least 20 and 10 well constrained

arrival times for the P- and S-wave, respectively. The 2D TIPTEQ velocity
model (rotated perpedicular to the trench) was used for the final loca-

ion .
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