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SEISMOTECTONIC & GEOLOGICAL SETTINGS
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The 2010 Mw 8.8 Maule earthquake ruptured the megathrust segmentright to the north of the patch

associated with the 1960 Mw 9.5 Valdivia earthquake. Historic earthquake records indicate a clear seismic
gap prior to the Maule earthquake (Camposetal., 2002), and pre-seismic secular GPS rates suggest a highly

coupled patch along this gap (Rueggetal.,, 2009; Moreno etal., 2010).

The Quaternary uplift rate in the forearcislow except at where peninsula develops, such as the Mejillones

Peninsula and the Arauco Peninsula (Melnick etal., 2009; Victor etal.,2011). The loci of peninsular

development correlate with upper crust structures. The backarcregion still experiences active magmatism
(Darwin, 1851) as well as Neogene compressional deformation (Folguera etal., 2004; Armijo etal., 2010).

The relationship between the activity in the forearc/backarc structures and the earthquakes on the

megathust remain poorly understood.

GPS & InSAR OBSERVATIONS
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We process all GPS data by linearly fitting the time series with secular rates, seasonal variations, coseismic
jump and post-seismic creep. Whenever the time series covers no pre-seismic periods, we interpolate the
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secular rates by using both derived and published rates (Moreno etal., 2008; Rueggetal., 2009), and subtract

the linear trends from the data. All stations are processed into a common stable South American reference

frame.

We process all ALOS SAR images acquired between February and the end of 2010 by using ROI_PAC (Rosen et
al., 2004). We include all interferograms of adequate coherence into our inverse model. The interferograms
made from descending track 422 (wide swath) acquired between the 3rd and 48th day after mainshock form
the most continuous map of the deformation field. These InSAR data provide significant spatial constraint to

the afterslip pattern on the megathrust.
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AFTERSLIP OF MAULE EARTHQAUKE: A "MIRROR" of NIAS CASE?

Afterslip of Nias Earthquake
(Hsu et al., 2000)
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EXPLANATIONI:

RANDOMNESS IN PRE-STRESS STATE?
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One possibility is that the lack of
shallow afterslip for Maule
earthquake results from the
heterogeneity of pre-stress state in
the seismogenic zone. Assume
that the pre-stress condition is not
symmetricin the up-dip and down-
dip directions. If the seismogenic
zone margin at which the rupture
frontreachesreceives large stress
change, postseismic creep may be
triggered. Atthe other end, if the
rupture is trapped by local low
pre-stressin the middle of the
seismogenic zone and could not
propagate to the margin, little or
no postseismic slip will happen.
Thisrandomnessin pre-stress
state explains both the post-
seismic distribution in Nias and in
Maule earthquake. It also implies
thatthe regions where no afterslip
were observed may experience
creep during a different event.
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EXPLANATIONII:
GEOLOGICAL CONTROL?

A | Simeulue-Nias Nias < 83
)= trench TF o ]
Key
1042 Coseismic
B slip patch
Trench Fill: Postseismic
209 2 km thick slip patch
-4 pelagic .
CO,+H,0 > 7 wt% Co.n.stramed by
30 . . Critical Taper
0 50 100 150 Aftershock
i , | atches
B | Constitucion cassiBne <%E P
0 FAP v @ Sediment delivery
trench —— o cceme- rate in km’/km/myr
’,’ ) % Sediment subduction
10 = PAP - rate in km’/km/myr
) / CB B @ Sediment accretion
504 Z;‘eknncll; hljllli i rate in km’/km/myr
J hemipelagic | ¢,  Internal friction
CO+H,0 < 5 wt% SN .
2. ¢,  Basal friction
30 . . . 61y ' .
0 50 100 150 A Pore ratio
| =o,(a-b), a, b
40 A fGn(a )J a, b arc
rictional parameters
TF  Trench fill
] AP Accretionary prism
B FAP Frontal AP
- PAP Paleo AP
50 Trench Fill: 4 L CB Continental backstop
1.5 km thick .
1 bomipelagic \ i OC  Oceanic crust
CO+H,0 > 5 wt% P
30 T (e T
0 50 100 %%a 150

Distance from trench (km)

[f the difference between Nias and
Maule is static through multiple
seismic cycles, itis likely due to
geological control. We compile all the
factors deemed related to frictional
properties along the subduction
interface. Those factorsinclude:
morphology (critical taper and
thereofimplied fault and crustal
strength; Suppe 2004 ), sediment flux
(Clift & Vannuchi, 2004 ), trench fill
geochemistry (Hacker 2008;
Lucassenetal., 2010). Among them
the fault and crustal strength do not
appear to have significant difference,
except for very low basal friction and
high pore ratio around the Arauco
Peninsula. The sediment subduction
rate is about twice larger in Nias than
in Maule, and the trench fill shows
higherlevel of hydration. Sediment
thickness or chemical composition
may be the controlling factor of
heterogeneous velocity-
strengthening properties on the
shallow part of the megathrust.



