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Introduction A Bayesian Approach to Estimating Apparent Plate Coupling Analysis of the Post-Seismic Deformation of the
We aim to understand the spatial variations of fault zone rheology in subduction zone megathrusts during the different stages of the . .
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Raw data from cGPS sites is processed using the softwares GAMIT (Central Andes) and GIPSY (Japan) to produce positional properties of the knots depth for any interpolated point of the curve. Our
time series for each site on the GPS network. The positional time series contain a secular motion due to interseismic tectonic loading, wE Bayesian approaf:h has no regularization other than the spatial scale imposed i
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