
Future Work

Postseismic slip following the 2007 
Mentawai earthquake (Kositsky and 
Avouac, in preparation), inverted using 
PCAIM.

Shallow Slip, Ancient and Modern
A coral record from South Pagai island suggests that a shallow 
megathrust rupture occured c. A.D. 1314.  This rupture must have 
been larger or deeper than the October 2010 shallow rupture.  
Elevations of coral microatolls over the past three millennia show 
evidence that the shallow megathrust has a distinct seismic cycle 
with a ~1000 year recurrence interval. 
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Photographs of a huge microatoll show sudden inception of 
columnar growth (indicatign subsidence) around A.D. 1314.  A radial 
slab shows the coral growth history prior to its death in about 1350 
(likely due to uplift in a previously-identified “conventional” 
megathrust rupture).
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(above) Comparing elevations of microatolls at a nearby locality from the past 700 
years suggests a long-term uplift rate of 1.8 mm/yr.   However, the elevations of 
older microatolls indicate that this trend cannot be extrapolated farther into the 
past.  Subsidence events must have balanced this uplift trend.  According to our 
interpretation, the red and green sawtooth curve represents tectonic stress buildup 
and seismic release on the shallow megathrust, a signal which is superimposed on 
the higher-frequency “conventional” megathrust seismic cycle.

(left) The presence of microatolls between 2000 and 8000 years old still within the 
intertidal zone indicates that little to no permanent uplift has occurred in the 
Mentawai Islands since the mid-Holocene.  Therefore, apparent long-term uplift 
observed at other sites is also probably an expression of the shallow seismic cycle.

There are a large suite of fault rupture models which could reproduce the observed 
coral paleogeodetic data, but in essence the rupture must have been larger than 
the 2010 event, and/or deeper on the plate interface.
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fault length: 100 km
fault width:  60 km
dip:  7.5 degrees
slip: 9 m
depth: 1.5 km

c. 1314 Shallow Megathrust Example Model (Mw 8.1)
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c. 1314 Deep Megathrust Example Model (Mw 7.5)
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c. 1314 Splay Fault Example Model (Mw 7.4)

fault length: 100 km
fault width:  20 km
dip:  20 degrees
slip: 2.5 m
depth: 3 km
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Seismic Supercycle
Variations
(right) Four Mentawai Islands emergence 
episodes of the past seven centuries.  Each 
episode consists of more than one major 
event, and each rupture sequence has 
unique features.

(below) Schematic diagram of interseismic 
and coseismic vertical deformation.

(below right) A newly uplifted coral reef, 
showing the seismic cycle.  The dead tree 
snags represent jungle trees that had 
grown when their roots were above the 
sea.  Slow subsidence above the locked 
Mentawai patch lowered them into the 
sea.  Just before the September 2007 
earthquakes the shoreline was to their left, 
at the sandy beach, and their substrate was 
below lowest tide. Uplift during the 
earthquake raised their bases once again 
well above low tide.
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At least two “conventional” 
megathrust ruptures, 
preceded by a shallow 
rupture.

Approximately four 
megathrust ruptures, 
with some slow slip 
between seismic events.  
Can possibly be modeled 
using PCAIM.

No evidence for more 
than two megathrust 
ruptures or for significant 
slow slip.   Interseismic 
and coseismic slip before 
and during rupture 
sequence to be modeled 
using PCAIM.

Four “conventional”  M>7 
megathrust ruptures so 
far,  with some slow slip 
between seismic events.  
At least one more M>8 
rupture is expected.   
October 2010 shallow 
rupture is likely the first 
of its kind since the early 
1300s.

Correlating Coral Records 
Using Climatic Events

HLS = Highest Level of Survival
ELT = Extreme Low Tide A

B

C

A. Techniques for measuring recent coseismic or postseismic vertical deformation.  Net 
uplift is measured by comparing pre- and post-earthquake HLS (top), while net subsidence 
can be measured by comparing pre-earthquake HLS to the extreme low tide (bottom).  
Adapted from Briggs et al. (2006).  B. Example of a radial coral slab cut.  C. Example of a slab 
cross-section, showing the annual band growth history and the corresponding relative sea 
level over time.  This coral demonstrates slow interseismic subsidence before and after a 
coseismic uplift event.  From Natawidjaja et al. (2006).

Coral Geodesy and Paleoseismology Techniques

reliable historical records known to nearest decade 
via U/Th dating 
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Regional Overview

Map of recent seismic ruptures of the Sunda megathrust, with a space-time diagram of 
rupture history compiled from our research.  (Inset) M, S, and J are Myanmar, Singapore and 
Java.  The red line is the outcrop of the Sunda megathrust on the sea �oor.  While Simeulue, 
the Batu Islands, and Enggano appear to lie above permanent barriers to throughgoing fault 
fupture, the Mentawai patch is characterized by temporary barriers to rupture.  As a result, it 
breaks in sequences of earthquakes rather than single end-to-end ruptures.

Abstract
Large sections of the Sunda megathrust have failed progressively over the past decade in an 
extraordinary earthquake sequence. One question of great humanitarian and scientific 
importance is how the remaining un-ruptured and under-ruptured patches might fail in 
coming decades. We use annually banded coral microatolls, which preserve precise 
information about past relative sea levels, to deduce tectonic histories centuries into the 
past.   Observations over multiple seismic cycles illuminate diverse types of fault rupture 
behavior, including a separate cycle on the shallow megathrust.

In preparation for modeling, coral records must 
be correlated more precisely than radiometric 
dating uncertainties allow.  This can be 
accomplished by lining up temporary 
oceanographic lowerings in sea level (which, 
like tectonic uplifts, kill the top of the coral.)
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* Perform PCAIM inversion for interseismic 
and coseismic slip leading up to and during 
1797/1833 rupture sequence.

* Correlate 16th- and 17th-century coral 
records using climatic coral die-downs.

* If data are sufficient, perform PCAIM 
inversion for 16th-and 17th-century rupture 
sequence.

* Compare ancient rupture sequences to the 
modern coral and GPS data.


