Ancient Shallow Slip and Other Seismic Cycle Variations On the Sunda Megathrust, Sumatra
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Map of recent seismic ruptures of the Sunda megathrust, with a space-time diagram of
rupture history compiled from our research. (Inset) M, S, and J are Myanmar, Singapore and -
Java. Thered line is the outcrop of the Sunda megathrust on the sea floor. While Simeulue, . .

the Batu Islands, and Enggano appear to lie above permanent barriers to throughgoing fault Sha I IOW SI | p, AnC|ent d nd MOdem
fupture, the Mentawai patch is characterized by temporary barriers to rupture. As a result, it
breaks in sequences of earthquakes rather than single end-to-end ruptures.
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A coral record from South Pagai island suggests that a shallow
megathrust rupture occured c. A.D. 1314. This rupture must have
been larger or deeper than the October 2010 shallow rupture.
Elevations of coral microatolls over the past three millennia show
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