Multi-Scale Dynamics and Rheology of Mantle Convection with Plates

Key Points	
 Global dynamic models of mantle convection with plates, using Rhea with adaptive mesh refinement allowing for local resolution of 1 km 	Model 104 yield stress stress expo
 Composite viscosity with diffusion creep (linear), dislocation creep (nonlinear), and yield stress 	
 Models have narrow plate boundaries, sharply defined slabs in the upper mantle, and tomography structure in the lower mantle 	
 Yield stress and stress exponent are varied: Strength and nonlinearity 	Model 107 yield stress
• Models are tested with suite of constraints: Plate motions, plateness, minimum shallow slab strain rate from seismic moment release, state of stress from CMT stress axes	stress expo
• We study regional dynamics: Microplate motions and trench rollback as function of yield stress and strain rate	Model 109
 Stress exponent strongly affects model results 	yield stress stress expo
• Emerging pattern: Yield stress important when low (< 200MPa). When yield stress is high, convective stress becomes more important and yield stress has no impact anymore	Figure 2: L plate motion ness. Right plate motio face strain ra
(a) PS PA MAR	24.0 22.5 21.0 19.5
b)	

Figure 1. Typical global viscosity field. (a) Cut through the Pacific (PAC), Marianas (MAR) and Philippine (PS) plates. (b) Zoom-in on the Marianas slab, with nonlinear effects visible in the mantle wedge and slab hinge. (c) Further zoom-in on the mesh around the weak zone at the Marianas trench, as indicated by the white box in (b), with a highest resolution of ~1 km.

Laura Alisic (alisic@gps.caltech.edu), Michael Gurnis (Seismological Laboratory, Caltech), Georg Stadler, Omar Ghattas (ICES, University of Texas at Austin), Carsten Burstedde (Rheinische Friedrich-Wilhelms-Universität Bonn)

Rollback, subducting plate velocity and strain rate constraints lie close. Models with moderate to high stress exponents and yield stress match the constraints.

Sandwich

Strain rate constraint is never reached. Only models with high stress exponent come close to matching rollback and subducting plate velocity constraints.

Marianas

The three constraints coincide well, and models with moderate stress exponent fit the constraints. The Marianas microplate shows unusually sustained effect of yield stress, even for high yield stresses.

