Abstract

It is difficult to locate earthquakes along subduction zones because of complex
geology and lack of oceanic stations. We can avoid some of these problems by
applying the cut-and-paste (CAP) method, which allows for timing shifts between
phases, assuming a 1D model, and determines source parameters. If the travel
times or lags of the phases due to path effects are known relative to a reference
model, we can locate the events’ centroid with surface waves without knowledge
of the 3D velocity structure. Here, we explore several possible methods of relo-
cating and some preliminary waveform modeling of the slab structure.
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Figure 1. (a) A comparison of GCMT (black) and CAPt (grey) solutions of the aftershocks of the 2010
Maule earthquake. The numbers next to the beachballs are depth estimates. The first number (NEIC
depth) and second (CAPt results) are included with the grey samples. The red lines indicate the differ-
ence in location. (b) Comparison of aftershocks location from three different catalogs (NEIC, ISC and
LIV). Events enclosed in the magenta boxes are studied in Fig.3
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Ambient Noise Study

A particular attractive approach for establishing path corrections for surface waves is ambient seismic
noise (ASN) (Zhan et al., 2011), whose resolution is about 3 km. To do this we computed noise cross-
correlations (NCC) between each station pair within the IRIS network (black trianges in Fig. 2b, Fig. 6),
measured the lag of phases due to path effects relative to a 1D model, and developed them into tomo-
graphic maps (Fig. 2b).
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Refining Earthquake Locations

With ASN path corrections for surface waves, we can deem the structure
as 1D, and determine the events’ centroid with Rayleigh waves. Another
useful method proposed by Chu et al. (2011) is to determine water depth
above the source using depth phases to control the off-shore distance.
We compare results from these methods against those provided by An-
dreas Rietbrock (LIV) using a temporary amphibious network.
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Figure 3. Spider diagrams of CAP inversions for Event 2 (Fig. 1b, Fig. 5) using different
catalogs. The lines connecting the source and stations are colored by time shifts needed
to align the velocity data and synthetics for Rayleigh waves (filtered to 15 -100 sec) . The
stations(triangles) are colored by the cross-correlation coefficients. Red lines means
actual travel time is longer than theretical in that path. It may indicate slow structure or the
source location should be further away, or errors in origin time.
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Figure 4. Mmap showing the misfit be- 342
tween ocean bathymetry and water

depth determined by water phases  -a«
(Chu et al., 2011) for Event 1 (Fig. 5).

White color shows small misfit, which
means favorable locations. Locations
from other groups are also plotted for
comparison.
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Preliminary Waveform Modeling of the Slab Structure

Most of the events show a strong travel time pattern caused by the fast
dipping slab for this region (Haberland, Rietbrock et al., 2009). This
feature is easily seen in the waveform patterns as well and appears

sensitive to the oceanic-crustal waveguide.
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Figure 7. 2D models used in the Finite Difference (FD) modeling. The different dipping
angles in Model | and Model 2 are to simulate the slab structure at various azimuths.
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Figure 8. (a) Record section of vertical P-waves for Event 3 (Fig. 6). The waveforms are
In displacement, and they are colored by azimuths as shown in the inset. It is notable
that the red ones are slower while the blue/green ones are faster. The slow paths are
mostly perpendicular to the trench where the dipping angle of the slab is large. (b) Syn-
thetics from 2D FD modeling with models in Fig. 7. We can see for slow dipping slab
structure the arrivals are earlier than the fast dipping slab case.

Observations of T-phase
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Figure 8. Another possible approach is to use the slow traveling T-phase. Some ex-
ample observations of this arrival at Easter Island are displayed. On the left are some
large aftershocks along with the main Maule event. On the right are events with our re-
fined mechanisms and locations. The great variety of shapes is not well understood but
we now have (thanks to Dunzhu Li) a code that can couple seismic waves into oceanic
paths. It appears that depth is important as well as the coupling zone (local geology).




