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Refining Earthquake Locations Along the Chilean Coast

It is difficult to locate earthquakes along subduction zones because of complex 
geology and lack of oceanic stations. We can avoid some of these problems by 
applying the cut-and-paste (CAP) method, which allows for timing shifts between 
phases, assuming a 1D model, and determines source parameters. If the travel 
times or lags of the phases due to path effects are known relative to a reference 
model, we can locate the events’ centroid with surface waves without knowledge 
of the 3D velocity structure. Here, we explore several possible methods of relo-
cating and some preliminary waveform modeling of the slab structure.
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Figure 8. Another possible approach is to use the slow traveling T-phase. Some ex-
ample observations of this arrival at Easter Island are displayed. On the left are some 
large aftershocks along with the main Maule event. On the right are events with our re-
fined mechanisms and locations. The great variety of shapes is not well understood but 
we now have (thanks to Dunzhu Li) a code that can couple seismic waves into oceanic 
paths. It appears that depth is important as well as the coupling zone (local geology). 
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Most of the events show a strong travel time pattern caused by the fast 
dipping slab for this region (Haberland, Rietbrock et al., 2009). This 
feature is easily seen in the waveform patterns as well and appears 
sensitive to the oceanic-crustal waveguide.
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Figure 1. (a) A comparison of GCMT (black) and CAPt (grey) solutions of the aftershocks of the 2010 
Maule earthquake. The numbers next to the beachballs are depth estimates. The first number (NEIC 
depth) and second (CAPt results) are included with the grey samples. The red lines indicate the differ-
ence in location. (b) Comparison of aftershocks location from three different catalogs (NEIC, ISC and 
LIV). Events enclosed in the magenta boxes are studied in Fig.3

With ASN path corrections for surface waves, we can deem the structure 
as 1D, and determine the events’ centroid with Rayleigh waves. Another 
useful method proposed by Chu et al. (2011) is to determine water depth 
above the source using depth phases to control the off-shore distance. 
We compare results from these methods against those provided by An-
dreas Rietbrock (LIV) using a temporary amphibious network.

Figure 2. (a) A sample of comparisons between NCC 
and 1D synthetics. The waveforms are filtered to 
15-100 sec, which is the same period band used for 
surfaces waves in regional CAP inversions. (b) Tomo-
graphic maps of the ASN surface wave velocity pertur-
bation relative to the reference 1D structure.  
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Figure 3.  Spider diagrams of CAP inversions for Event 2 (Fig. 1b, Fig. 5) using different 
catalogs.  The lines connecting the source and stations are colored by time shifts needed 
to align the velocity data and synthetics for Rayleigh waves (filtered to 15 -100 sec) . The 
stations(triangles) are colored by the cross-correlation coefficients. Red lines means 
actual travel time is longer than theretical in that path. It may indicate slow structure or the 
source location should be further away, or errors in origin time.

Figure 4. Mmap showing the misfit be-
tween ocean bathymetry and water 
depth determined by water phases 
(Chu et al., 2011) for Event 1 (Fig. 5). 
White color shows small misfit, which 
means favorable locations. Locations 
from other groups are also plotted for 
comparison.

Figure 5. Mechanisms of after-
shocks of the Maule Event 
(solution of the mainshock is 
from Global CMT) determined 
by regional  CAP utilizing the 
above location refining ap-
proach. Events enclosed in red 
are studied in Fig 3, 4 and 6. 
The color of beachballs repre-
sents depth and the size indi-
cates magnitude.
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Refining Earthquake Locations

 A particular attractive approach for establishing path corrections for surface waves is ambient seismic 
noise (ASN) (Zhan et al., 2011), whose resolution is about 3 km. To do this we computed noise cross-
correlations (NCC) between each station pair within the IRIS network (black trianges in Fig. 2b, Fig. 6), 
measured the lag of phases due to path effects relative to a 1D model, and developed them into tomo-
graphic maps (Fig. 2b). 

(a) (b)

Preliminary Waveform Modeling of the Slab Structure

Figure 7.  2D models used in the Finite Difference (FD) modellng. The different dipping 
angles in Model I and Model 2 are to simulate the slab structure at various azimuths.

Figure 8. (a) Record section of vertical P-waves for Event 3 (Fig. 6). The waveforms are 
in displacement, and they are colored by azimuths as shown in the inset. It is notable 
that the red ones are slower while the blue/green ones are faster. The slow paths are 
mostly perpendicular to the trench where the dipping angle of the slab is large. (b) Syn-
thetics from 2D FD modeling with models in Fig. 7. We can see for slow dipping slab 
structure the arrivals are earlier than the fast dipping slab case.  

Observations of T-phase
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