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       The fine-scale seismic structure of the central Mexico subduction zone, particularly the 
interface between the slab and overriding plate, is studied using shallow (~40-90 km) intraslab 
earthquakes of moderate magnitude (M4-6).  Regional waveforms from the Mapping the Rivera 
Subduction Zone (MARS) seismic array are complicated and contain detailed information 
about the subduction zone structure.  Identification of seismic phases, their arrival times, and 
any possible complexities in their waveshapes provide evidence of lateral variations in 
structure.  The detailed waveform information obtained is used to model the structure of the 
subducted plates, particularly along the transition from flat to normal subduction, where recent 
studies have shown evidence for possible slab tearing along the eastern projection of the 
Orozco Fracture Zone (OFZ).  The lateral extent of a thin low velocity layer imaged atop the 
subducted Cocos plate in recent studies along the Meso America Subduction Experiment 
(MASE) array is examined here using MARS waveforms.  We find an edge to this low velocity 
layer which is coincident with the western boundary of the projected OFZ region.  We use 
forward modeling of the 2D structure of the subducted Rivera and Cocos plates using a finite-
difference algorithm in order to provide constraints on the thickness, velocity, and geometry of 
each slab's shallow seismic structure in this region.  This modeling shows that the best 
approximation to the observed seismograms is obtained when there is an edge to the low 
velocity layer coincident with the western boundary of the projected OFZ region.  Coupled with 
the results of recent plate motion studies which show that the Cocos plate north of the OFZ 
moves differently than that south of the OFZ, we propose that the Cocos slab is currently 
fragmenting into a North Cocos plate and a South Cocos plate along the eastern projection of 
the OFZ.  This tearing event may be a young analogy to the mature Rivera-Cocos plate 
boundary.

I.                      Abstract

Regional tectonic map of the central Mexico subduction zone including locations of 
MARS, MASE, and Servicio Sismologico Nacional (SSN) seismic stations.  The 
locations of the Orozco Fracture Zone (OFZ), Middle America Trench (MAT), East 
Pacific Rise (EPR), and Trans-Mexican Volcanic Belt (TMVB) are also indicated.  
Hachured lines indicate offshore El Gordo Graben (EGG) boundaries.  Subducted slab 
isodepth contours from Pardo and Suarez (1995).  The projected path of the OFZ 
beneath the North American plate is shown as a thick, red dashed line, with thinner, 
red dashed lines to either side delineating the estimated 100 km width of the fracture 
zone (Blatter and Hammersley, 2010).  The thick northwest-southeast (NW-SE) 
trending line marks the location of the data profile and 2D velocity model cross-
section.

II.                 Background
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Profile across the MARS 
array along NW-SE line (see 
map in II) using the ncM 
model.  Data are in black, 
synthetics are in red.  For 
stations located within the 
TMVB, complex waveforms 
are observed after the arrival 
of the S-wave in the data 
(indicated by orange box) and 
are most prevalent on the 
transverse component.  These 
complexities are not predicted 
by the model synthetics and 
may be indicative of a change 
in crustal structure within the 
TMVB region.  

The sensitivity of observed waveforms to subduction zone structure is tested in 1D 
using five different models.  Overall, the new central Mexico (ncM) model 
provides the most accurate prediction of the data, with the best fits to P, sP, and 
SH phases at all distances, along with an S-wave multiple at large distances.  The 

SoCal model provides a 
comparable fit to these phases, 
but fails to predict some of the 
waveform complexities seen 
in both the data and the ncM 
model, such as the "shoulder" 
following SV.  The uppermost 
slab structure in the ncM 
model, particularly the ultra-
slow velocity layer, is likely 
responsible for reproducing 
the observed waveform 
complexities that the simpler 
SoCal model fails to predict.

III.        1D Velocity Modeling
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IV.     Ultra-slow Velocity Layer

Local S-to-P conversion points from the top of the Cocos slab (small circles) for MARS 
stations which recorded complex (large green circles), possibly complex (large blue 
circles), or simple (large red circles) P waveforms for the eight events which exhibited 
complexity (conversion points are colored corresponding to station).  An approximate 
location for the western edge of the USL atop the slab is proposed (blue dashed line) 
based on the locations of these conversion points.
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Schematic illustrating the ray paths of the P-
wave and the three S-to-P phases (A, B, C) that 
comprise the complex P waveform.
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Examples of complex (left), possibly complex 
(middle), and simple (right) P waveforms from 
event 1.  S-to-P phases A, B, and C are 
indicated by red, blue, and green tick marks, 
respectively.  All three of these phases are 
visible in the complex waveforms within 4 sec 
of the P-wave.  Questions marks on the possibly 
complex waveforms indicate a phase that is not 
easily identified.  Simple waveforms lack the 
shoulder in the direct P pulse indicative of the C 
phase and also have uncharacteristic A and B 
phases, indicating there is no USL present.  
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V.     2D Velocity Modeling

2D velocity model of the upper 125 km subduction zone structure across 
the MARS array along the NW-SE line (see map in II).  P- and S-wave 
velocities are from the ncM model.  Subducted slab shape is estimated 
from isodepth contours.  Locations of the approximate USL edge, stations 
MA51 and MA55, Colima graben, TMVB, and Colima volcano (black 
triangle) are indicated for reference.  The location of event 3 used in the 
modeling is shown by the black star.

2D modeling results of 
event 3 along the NW-SE 
profile.  The arrivals of the 
major phases in the data are 
indicated.  The model 
predicts the P and sP 
phases reasonably well at 
all distances and the S-
wave at most distances.  A 
later unidentified large 
amplitude phase is 
predicted reasonably well 
by the model at distances 
greater than ~320 km.
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Comparison of 2D modeling 
results for five different models.  
The primary variance among 
the models was the USL.  
Segment of waveform 
illustrating greatest variance 
among the models is shaded 
grey.  Cross-correlation 
coefficients (X) are shown.

VI.            Slab Dip
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(c)

Seismicity and slab dip across the USL edge.  (a) Map of epicenters 
(stars) from 2001-2011 SSN event catalog.  Data in four 50 km wide 
bins parallel to the USL edge (blue dashed line) are analyzed for 
changes in slab dip across this region.  (b) Cross-sections of seismicity 
in the S Cocos slab (top) and N Cocos slab (bottom).  (c) Plot of slab 
dip across the data bins.  Error bars are weighted by the number of 
events in each bin.

VII.      Slab Tear Model
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3D schematic of the two-tear model illustrating the geometry of the S 
Cocos, N Cocos, and Rivera plates, along with the Orozco (OFZ; young 
tear) and Rivera (RFZ; old tear) fracture zones.  Plate convergence rates 
and directions (small arrows) are shown at the trench.

VIII.        Conclusions
-Our results show there is a western boundary to the ultra-slow velocity 
layer atop the Cocos slab.  This boundary is approximately coincident 
with the western margin of the projected Orozco Fracture Zone region.

-The best fitting 2D model uses ncM velocities and has an edge to the 
USL in our proposed location.

-Based on the USL edge location, 2D modeling results, and results of 
recent plate motion studies, we propose that the Cocos slab is currently 
fragmenting into North and South Cocos plates along the projection of the 
OFZ.  This tearing event may be a young analogy to the mature tear along 
the Rivera-Cocos plate boundary. 


