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- l. Introduction _ 11l. Model - V. Numerical simulations

Rate and State Friction Empirical Equations for State Variable We conduct 2D numerical simulations of heterogeneous rate-and-state faults under the quasi-
dynamic approximation with a spectral Boundary Element Method. We first simulate several SSE
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Ariyoshi et al (2011) modeled tremor swarms as a cascade of asperity ruptures
mediated by transient aseismic slip. The post-seismic slip induced locally by each
asperity break propagates at a speed that correlates with the background slip

law with transition from velocity-weakening to strengthening. We adjust model parameters to obtain a SSE
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