
A sequence of large strike-slip earthquakes occurred about 200km west of Aceh beneath the Wharton Basin which is sandwiched between the Ninety-East Ridge 
and the Sunda Trench. First reports indicate that this intraplate event was extremely complex involving three to four subevents MW>8 with a maze of aftershocks 
spread across the entire basin. Here we develop a kinematic slip model of the sequence to better understand the northeastern edge of the Australia plate tectonics 
encountering compression and subduction. Without near field geodetic data, we had to develop hybrid Green’s Functions to model the regional oceanic-continental 
surface wave observations. These included 4 Indian Oceanic Island stations and 7 mixed-paths to the north and east. We perform a joint inversion of these regional 
observations along with teleseismic body waveform data to recover the rupture details. We employed a combination of simulated-annealing and grid-search tech-
niques to develop a finite rupture model involving three interacting fault planes striking 289° (F1), 20° (F2) and 310° (F3) and dipping 89°, 74° and 60°, respectively. 
The modeled rupture consists of cascade of high stress drop asperities (with stress drop between 10 and 30MPa). The timing of those ruptures is consistent with 
a slow initiation followed by a relatively smooth propagation of a rupture front from one fault to the other (F1, F2 and F3 in sequence) with rupture velocities of 
2~2.5km/s. The whole process generated a 200s long moment rate function with multiple peaks and an apparent E-W directivity which is actually the result of inter-
ferences of waves generated by near simultaneous rupture of various asperities. The asperities ruptured during the main shock and the Mw8.2 aftershock which oc-
curred 2 hours later, span a depth range between 0 and 50km. This suggests that the earthquake sequence, which is part of broad left-lateral shear zone between 
the Australia and India plates, ruptured the whole oceanic lithosphere. The incremental strain due to the earthquake sequence is consistent with this interpretation. 
The earthquake sequence reactivated existing fracture zones of the Fossil Wharton Ridge to the south and was probably triggered by unclamping due to the great 
Sumatra earthquake of 2004.  
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Figure 1. Tectonic setting and overview
(A). Tectonic setting in Sunda-Sumatra 
region. The arrows indicate the plate motion 
between Australian Plate (AU) and Sunda 
Plate (SU), Indian Plate (IN) and Sunda 
Plate. Red triangles are the regional stations 
used in study of the main shock, the two 
black triangles are additional stations used 
for the M8.2 aftershock. Yellow and blue 
contours show the slip model of 2004 Mw9.2 
and 2005 Mw8.6 earthquakes, respectively. 
Red dashed lines are the plate boundaries 
defined in (Bird 2003).   (B). Map view of the 
fault geometry consists of three fault seg-
ments (F1, F2 and F3). The white rectangle 
is the map view of the fault segment used for 
inverting the Mw8.2 aftershock. The beach 
balls are the GCMT and W-phase solutions 
for the main shock, Mw8.2 aftershock and 
Mw7.2 foreshock. The blue and red starts 
indicate the NEIC epicenter of these events. 
The W-phase solution for the main shock 
includes two point source (blue dots), with 
moment magnitude of 8.5 (I) and 8.3 (II). The 
red dots are the aftershocks in the first two 
months and the white dots are the seismicity 
in the first 4 months before the main shock, 
locations are obtained from GFZ catalog. 
Yellow and blue contours are the same as in 
A. The inset shows the moment-rate function 
of the main event along with the contribution 
of each segment.  C. Beach balls display the 
mechanisms of the main shock, initiation 
with the Mw5.2 event corresponding to the 
first 5s and the Mw6.4 with the first 12s. The 
back projection results are shown as dia-
monds ((Meng et al. 2012) 

Figure 2. Regional vertical component for mainshock and foreshock
Regional velocity record (vertical component) of the main shock and foreshock and SEM syn-
thetics generated from a 3D model (red) of the main shock downloaded from
 http://global.shakemovie.princeton.edu/ as shown in the middle column. All the waveforms 
are filtered to 50s and longer using a 4th order 1 pass Butterworth filter. Note that the true am-
plitude is plotted with different scaling factor for 3D synthetics (0.4) and foreshock (30). The 
red dashed line in the data is a theoretical prediction assuming a second point source located 
300km to the southwest (azimuth 250°) of the epicenter assuming that the seismic wave trav-
els at a speed of 4.0km/s. 

Figure 3. Example fits for IPM
Example waveform fits of the vertical 
component of station IPM for the main 
shock and the foreshock. The maxi-
mum amplitude of data is shown at the 
end of the record. The synthetic (gray) 
for the main shock is decomposed into 
the contribution from F1 (brown) , F2 
(red) and F3 (green). Note the syn-
thetic for the foreshock is generated by 
the GCMT solution. All the synthetics 
are filtered to 50s and longer using the 
same filter as in Fig.2.

Figure 4. Regional waveforms of the foreshock, include, data, 
synthetics of ref2, ref3 and 3D model
Regional waveform of the foreshock includes data (black), syn-
thetics generated by 1D velocity models (ref2/red and ref3/blue) 
and 3D velocity model (green). Stations are divided into two 
groups according to paths as displayed in A (ref2, red) and 
B(ref3, blue). The true amplitude of seismograms are plotted with 
scaling factors for different stations for better display purposes. 
Seismograms are all filtered to 50s and longer using the same 
filter as in Fig.2.

Figure 5. Cross-correlation coeffi-
cients between data and synthet-
ics for the foreshock calibration.
Summary of waveform cross-
correlation coefficients (CCs) be-
tween the data and 1D synthetics 
(red/ref2, blue/ref3), and 3D syn-
thetics (green). CCs for vertical, 
radial and tangential are dis-
played from bottom to top. Note 
the ref2 model can fit the conti-
nental paths better while the ref3 
model favors the oceanic paths, 
separated by the dashed line. 

Figure 6. CAP inversion result
Cut-And-Paste (CAP) inversion 
result for the foreshock. A grid 
search for the best depth with 
intervals of 5km is applied; here 
the waveform fits for the best 
depth (15km) are shown. Station 
names are indicated at the 
beginning of the record along 
with distance in km (upper) and 
azimuth in degree (lower). The 
first number below each wave-
form pair is time shifts needed to 
aligned synthetic and data, and 
the second number is waveform 
cross-correlation coefficient in 
percentage. Positive time shift 
means the velocity model is too 
fast. The red beach ball at the 
top shows the lower hemisphere 
projection of the mechanism 
(10°/80°/-26°/7.24 for 
strike/dip/rake/Mw) and the dots 
in it indicate station projections 
on the lower hemisphere, each 
according to its first arrival P 
wave take-off angle.

Figure 7. Teleseismic station map
Station distribution of teleseismic P and SH components used in the inversions. The size of triangle 
is proportional to the maximum displacement amplitude for each station. Here the triangle sizes for 
P-wave are amplified by 8 times to make them comparable with that for SH-wave. Note that the larg-
est amplitude patterns are rotated by about 45° as predicted for a strike-slip event. 

Figure 8. Teleseismic P-wave record for M6.0, M7.2, M8.2 and M8.6 earth-
quakes
Teleseismic P-wave vertical components for the M6.0 (aftershock), M7.2 
(foreshock), M8.2 (aftershock) and M8.6 (main shock) earthquakes. Both 
velocity (dashed line) and displacement (solid line) records are displayed in 
the raw data, note the noise level in the M8.2 produced by the main event 
since it is an early aftershock (2 hours). 

Figure 9. Slip model, moment-rate function, and rise time
Depth profiles of slip distribution (left), rise time (right) and moment rate (middle) of the joint inver-
sion finite fault model. Slip and rise time are color coded, the contour lines are the rupture starting 
time relative to the epicenter origin time. Note that the interval of contour lines is 25s. Arrows in 
slip distribution indicate the rake angle. Contribution from different fault segment is shown in the 
moment rate function with the grey-shaded region indicating the total radiation-rate.

Figure 10. Regional waveform fits for the joint inversion model
Three components regional waveform fits for the joint inversion 
model, in which data is shown as black and synthetic as red. All 
waveforms are filtered to 50s and longer using the same filter as 
in Fig.2. Station names are indicated at the beginning, the 
number at the end of each pair is the maximum amplitude of 
data. The empty spaces are clipped components. 

Figure 11. Separation of regional waveform fits
Separation of regional synthetic waveforms (grey) into the contribution of segment F1 (brown), F2 (red) and F3 (green). The gray trace is the sum.

Figure 12. Slip model on 
F1 and F2 for regional 
only inversion, teleseis-
mic only inversion and 
Joint inversion
Depth profiles of slip 
models for the regional 
only inversion (upper), 
teleseismic only inversion 
(middle) and joint inver-
sion (lower). Here we 
only display segment F1 
and F2. 

Figure 13. Representa-
tive teleseismic P-wave 
fits from regional only 
model and teleseismic 
only model
Selected teleseismic 
P-wave fits, (A) predic-
tion from regional only 
inversion, (B) teleseismic 
only inversion. Data are 
displayed in black and 
synthetics are in red, sta-
tion name is indicated at 
the beginning of each 
trace with epicenter dis-
tance in degree (lower) 
and azimuth (upper). 
Maximum amplitude of 
data in micro-meter is 
shown at the end of the 
seismogram. 

Figure 14. All teleseismic waveform fits 
Teleseismic waveform fits for the joint inversion model, P waves 
and SH waves are separated by the gray line in the middle, see 
Fig.13 for detail of description. Stations at three azimuths groups 
are indicated by the dashed rectangles (Box1, Box2 and Box3) with 
representative stations shown in Fig.16.

Figure 15. Separation of teleseismic waveform fits
Separation of teleseismic synthetics (gray) into the contri-
bution of fault segment F1 (brown), F2 (red) and F3 
(green). 

Figure 16. Representative tele-
seismic fits for stations at azimuth 
of 250°, 320° and 140°
Representative teleseismic sta-
tions (LSZ, KIEV, TAU) selected 
from three groups of stations as 
indicated in Fig.14. (A) Normal-
ized Green’s Functions for the 
three stations, direct P and ocean 
bottom reflection pP and sP 
phases are pointed out by 
arrows. The Green’s Functions 
are computed by using unit slip 
on the subfault where the rupture 
on F2 was initiated, as shown in 
(B) by the small white rectangle. 
(B) Slip model on fault segment 
F2, see Fig.9 for detail of arrows 
and contours. The rupture on this 
fault is divided into different col-
umns as shown. Corresponding 
synthetics are presented in C,D 
and E. (C) Lower left is the wave-
form fits of the joint inversion 
model at station LSZ, with de-
composition into fault segment 
F1, F2 and F3 displayed on upper 
left. Right panel shows the contri-
bution of columns C-1 to C2 com-
pared with the total synthetics 
from F2. (D) and (E) are similar 
as (C) for station KIEV and TAU.

Figure 17. Slip model of M8.2 aftershock
(A) Depth profile of the slip model for the Mw8.2 aftershock; contour 
lines indicate the rupture starting time and the arrows show the rake 
angles. (B) Moment rate function. (C) Regional waveform fits with 
data in black and synthetics in red, all the seismograms are filtered 
to 50s and longer, see Fig.10 for detail of description. 
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Figure 18

Figure 18. 3D view
The middle image is a 3D view of bathymetry and topography along 
with the schematic fault segments shown as rectangles. The red 
lines are the projection of the upper boundary of the fault plane of 
F1, F2 and F3 on the seafloor. Aftershocks are shown as yellow 
dots and the white dots are the foreshocks. Smoothed depth profiles 
of slip models of the 3 fault segments of the main shock and the 
Mw8.2 aftershock are shown on sides. 

Figure 19. Fracture Zone, Seafloor Age and the Moment Depth Distribution
(A). Fracture zones (denoted as black lines and marked as F1 to F7) in this 
region are overlapping with the seafloor ages (Muller et al. 2008). The red 
rectangles are the map view of three fault planes used in the inversion and 
red star is the epicenter of the main event, the black rectangle is the fault 
plane used for the Mw8.2 aftershock. Note that the Fossil Wharton Ridge is 
subducting beneath the Sunda trench. Slip models of the 2004 (Mw9.2, 
yellow) and 2005 (Mw8.6, blue) megathrusts are shown as contours. The 
red dashed lines are the plate boundaries from (Bird 2003). (B). Depth dis-
tribution of moment release for both the mainshock and the aftershock, the 
contribution from different segments to the mainshock are shown in differ-
ent colors. The black solid line is the strength envelope of the oceanic litho-
sphere, which is computed by the Byerlee’s frictional sliding rule for the dry 
rock and rheology for olivine for the plastic flow (Kohlstedt et al. 1995). 

Figure 20. Prediction of static horizontal motion
The horizontal motion (vectors) predicted by the preferred slip 
model. Note the scale is different by a factor of 10 for region to 
the east and west of 94.5°E longitude line (dashed). The 2004 
and 2005 megathrusts are shown as color contours. The red 
dashed lines are the plate boundaries from (Bird 2003). Fault 
planes used in the inversion are shown as rectangles. Note 
that the region has undergone a net comparison as indicated 
by the arrows. The red arrows in the low-left corner indicate 
the stain-rate in this region based on the model presented by 
(Delescluse & Chamot-Rooke 2007).

Modeling the 2012 Wharton Basin Earthquakes off-
Sumatra; Complete Lithospheric Failure

Shengji Wei, Don Helmberger and Jean-Philippe Avouac
Seismological Labatory, Division of Geological and Planetary Sciences, Caltech, Pasadena

1. The main shock ruptured at least 3 fault segments (F1, F2 
and F3) and the rupture delay between F1 and F2 is 10s and the 
delay is 80s for the rupture between F1 and F3. The total 
moment of the earthquake is 1.3×1022N•m and the total dura-
tion is about 210s. The moment distribution on F1, F2 and F3 is 
3.3×1021N•m, 8.0×1021N.m and 1.9×1021N•m, respectively.
2. Both the mainshock and the Mw8.2 aftershock show slip 
patches as deep as 50km, and the largest co-seismic slip for the 
main event is up to 24m and is located on F2 near the intersec-
tion of F1 and F2. The estimated stress drop ranges from 
10MPa~30MPa for the mainshock and is about 10MPa for the 
Mw8.2 aftershock. 
3. This earthquake sequence has re-activated the NNE-SSW 
oriented fracture zones in the Wharton Basin and some ENE-
WSW oriented faults included a segment which cuts across the 
Ninety-East Ridge. 
4. This earthquake sequence is part of the diffuse deformation 
zone between the Indian and the Australian plates.
5. This earthquake sequence was probably triggered by static 
stress change induced by the Mw 9.2 great Sumatra earthquake 
of 2004.
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