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A sequence of large strike-slip earthquakes occurred about 200km west of Aceh beneath the Wharton Basin which is sandwiched between the Ninety-East Ridge - - -
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The modeled rupture consists of cascade of high stress drop asperities (with stress drop between 10 and 30MPa). The timing of those ruptures is consistent with Figure 10 Figure 11
a slow initiation followed by a relatively smooth propagation of a rupture front from one fault to the other (F1, F2 and F3 in sequence) with rupture velocities of
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2~2.5km/s. The whole process generated a 200s long moment rate function with multiple peaks and an apparent E-W directivity which is actually the result of inter- Figure 14 s s * Figure 15 e 10, Regional waveform fits for the iaint inversion model
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The earthquake sequence reactivated existing fracture zones of the Fossil Wharton Ridge to the south and was probably triggered by unclamping due to the great are indicated by the dashed rectangles (Box1, Box2 and Box3) with (green). o P
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