Mechanical conditions for propagating a rupture to the surface e
The example of the great 2011 Mw 9.0 Tohoku-Oki EQ —
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Models with 2 different assumptions on the trench: either free or blocked, from Perfettini and Avouac in prep. see poster: Co-, post- and inter-seismic models of the 2011
Mw?9.0 Tohoku-Oki EQ. Inter-seismic models are obtained from data compiled by Loveless and Meade, GRL, 2011. Free surface is thought to increase the amount of slip because of the trapping and concentration of seismic waves (Kozdon and Dunham,
light blue: Wei et al., EPSL (2011) co-seismic model; green: aftershocks delimitation from Kato and Igarashi GRL, 2012; dark blue: co-seismic slip model with assumption subm.). Although the 2D simulations do not include a free surface, the behavior of the region of lowest normal stress can still be qualita-
of blocked trench. tively compared to the observations.

3. Dynamic simulations of earthquake cycles:
RS with efficient TP RS with TP + increase of friction Conditionally stable with efficient TP RS barrier and 2nd RW asperity:
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Efficient TP can be achieved by decreasing the permeability or the width of the shear
zone or by increasing the friction. Conditionally stable: RS barrier:
However a trade-off has to be find between a large L* allowing for an unusual propa- Post-seismic: Large slip can also be achieved by thermal pres- '

. . . L. , Interseismic: o~ > .. , As shown by Kaneko et al., Nat. 2009, the propa-
gation in the rate-strengthening area, and a strong shear stress drop allowing for a In order to have a large amount of post-seismic slip at the trench, the coseis- ' _ surization in a conditionally stable patch. The in- ation throueh a RS barrier depends on the width
very large slip. mic slip has to decrease strongly at the trench. This can be achieved by in- ?n case.of l.arge reccurence time of the large events, terseismic creep before the EQ as well as the post- gf the barrieligan 4 the pre-s tresg A large EQ could
A large friction combined with a raisonable permeability can reproduce these large creasing the permeability at the trench. A higher slip at the trench would not interseismic creep will occur at the trench. If large seismic slip can also be reproduced. However, the ropacate throueh buIt) either i.nterse%smic croo
events with a maximum of slip localized up-dip and a large reccurence time. A stron- allow for postseismic deformation. Besides, since each large EQ undergoes a slip could shoot the interseismic creep, then post- propagation in the up-dip conditionally stable Eorp Ogs reismic sgli could be observed P
ger normal stress in the up-dip part of the megathrust could lead to the same results. backward propagation, a postseismic deformation at the back seems unlikely. seismic deformation should be limited. zone is almost systematic. P P '

4. C - ith ob ti Comparison with seismic cycle from observations: Conclusions
. Comparison with observations
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distance along the fault (km) distance along the fault (km) all =>> Up-dip thermal pressurization can reproduce several particularities of
- the Tohoku-Oki EQ like the backward propagation.
In the up-dip part of the megathrust, a higher static friction as well S|
The backward propagation as observed by Meng et al., GRL 2011, as a higher dynamic pore pressure and a low effective dynamic =>> A sudden increase of friction, decrease of permeability leading to a
is very well reproduced: friction are consistent with properties required to activate the land- l | high pore pressure are also required to activate the landward normal fault.
The EQ went first down-dip then up-dip and again down-dip, ward normal fault (SEE POSTER: Mechanical conditions to aci- | interseismic 2011 post-seismic
— pre-2011 events 2011 co-seismic
vate the landward normal fault of the NE Japan forearc) o . . . | | | |






