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• The channel steepness index serves as a metric of relief that can be directly tied to process-based erosion models

• Catchment average erosion rates in the San Gabriel Mountains range from 30-1200 m/Ma, reflecting a strong gradient in 
rock uplift rate (as opposed to climate or lithology)

• A non-linear relationship between channel steepness and erosion rate in the SGM can be explained by a stochastic-
threshold incision model where thresholds of incision preferentially retard the erosion of low-steepness channels

• The relationship between channel steepness and erosion rate is sensitive to variations in climate and rock strength, and 
enables quantitative predictions of these influences on erosional efficiency.

9. Conclusions
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• Humped relationship between erosion rate and runoff 
when threshold-dominated

• Erosion insensitive to increases in runoff beyond ~500 
mm/yr for much of parameter space

• Suggests weak climate-tectonics link (dual effect of ϕ<1 
and weak runoff-E relationship (Whipple and Meade 2004))

• The most sensitive landscapes have steep channels, low 
threshold, and highly variable climate not offset by de-
creases in mean runoff (e.g., Taiwan)
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8. Implications for climate-tectonic feedbacks

Change mean runoff only

• Decrease runoff = lower E (less efficient)

• Increase runoff = higher E (more efficient)

• “Shape” does not change, just magnitude

Start with SGM fit, and change climate variables to 
see influence on ks-E relationship

Change discharge variability only

• Decrease variability = lower E (less efficient)

• Increase varibility = higher E (more efficient)

• Increasingly non-linear for high variability

Covary mean runoff and discharge variability
   (Cont. US empirical relationship, Molnar et al., 2006)

• Inverse relationship between mean and variability

• For low E, dry, variable channels are more efficient

• For high E, wet, stable channels are more efficient
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7. Climate and erosional efficiency
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Incorporate threshold term into stream power model, drive with 
full distribution of storm events (Tucker, 2004; Lague et al., 2005)

Critical discharge depends on channel steepness index. 
Steeper channels incise more frequently.

• Shape of ks-E relationship depends on frequency of 
large floods

• Magnitude of curve depends on K (erodibility), which 
is tuned to SGM data

• Stochastic-threshold model fits SGM data to first order 
without accounting for sediment and geometry dynamics

• These effects become important in the transient case

• For high erosion rates (neglible threshold), above rela-
tionship collapses to standard stream power

• When the threshold term dominates, the shape of the 
ks-E relationship is governed primarily by discharge 
variability

• Channels in the San Gabriel Mountains lie well within 
the threshold dominated regime

(normalized discharge Q*)
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(long-term erosion: integrate
over full pdf of discharges)

(discharge distribution w/ power law tail)
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(k relates to discharge variability:
low k = high variability)
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6. Stochastic-threshold incision model

(Lague et al., 2005)

• Channel steepness increases non-linearly with erosion rate, implies 
that steeper channels are more efficient

• Of the potential factors that may contribute to this roll-over, we use 
field measurements and USGS streamflow data to show that it is 
likely due to the influence of an erosion threshold that preferentially 
retards the incision of low steepness channels.
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5. A non-linear relationship between channel steepness and erosion rate

Summary of field survey data from SGM channels. Width 
scales similarly with drainage area across the range.

Channels in the SGM tend to be mantled with a thin layer of alluvium 
- bare bedrock channels are rare. We use pebble counts to estimate a 
minimum threshold shear stress based on incipient motion.

Exceedance plot of mean daily discharge normalized by the mean of all events 
for Cucamonga creek, showing power-law distribution of large floods.

• Analyze USGS mean daily discharge records for 9 gages across SGM (40+ year records)

• Mean daily discharge scales linearly with drainage area over 3 orders of magnitude (mean runoff = 280 mm/yr)

• Distribution of large floods follows a power-law scaling that is consistent across the SGM

• Mean annual precipitation over catchments is ~700-1000 mm/yr; storms follows a poisson distribution
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4. Characterizing climate: flood frequency distributions

Catchment averaged erosion rates in the San Gabriel Mountains, showing chan-
nel network color-coded by steepness index.

• Cosmogenic 10Be concentrations in stream sands 
integrate exposure history of thousands of grains

• Key technique for measuring erosion rates over 
millennial timescales

• This study: 80 catchment-averaged erosion rates 
across San Gabriel Mountains

• Rates range from 30-1200 m/Ma, generally in-
crease from west to east Elevation
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3. Quantifying erosion rates: detrital cosmogenic nuclides

Side profile of catchment showing elements 
comprising relief.

Channel steepness scales linearly with 
catchment-scale relief.

Comparison of two channels in the San Gabriel Mountains showing 
long profile (top) and associated slope-area plot (bottom).

S = ksA-θ

• Bedrock channels define relief structure of unglaciated landscapes

• Flint’s law relates channel slope to drainage area:

 

   ks = channel steepness index; θ = concavity index

• Extract channel profile data from 10 m DEM (fix θ, fit ks)
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2. Defining topographic relief: the channel steepness index

(Whipple et al., 1999) (DiBiase et al., 2010)

• Compact mountain range just north of Los Angeles, CA, composed 
primarily of highly fractured granites and gneisses

• Large restraining bend in the San Andreas Fault creates a strong gra-
dient in rock uplift rate

• Hold climate and lithology constant - isolate topographic controls on 
erosion rate

1. Study area: San Gabriel Mountains

LA

SAF

SMFS

N 40 km SMFS = Sierra Madre Fault System
SAF = San Andreas Fault

LA = Los Angeles
relative plate motion

San Gabriel Mountains

Quantifying relationships among topography, climate, and erosion rate

Landscape-scale erosion rate depends generally on topographic relief, climate, and rock strength. To build a quantitative 
understanding of landscape dynamics, we must incorporate metrics of these variables into process-based erosion laws. 
Here I use cosmogenic erosion rates, DEM analysis, streamflow records, and field surveys to quantify the topographic con-
trols on erosion rates in the San Gabriel Mountains of California, and explore the influence of climate on this relationship 
using a 1-D bedrock river incision model.

Motivation: what controls erosion?
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