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Abstract L east Squares Slip Inversion and Variable Regularization Approach Results and Discussion
We infer the spatial distribution of after-slip following the Mw 9.0 11 March 2011 Tohoku-Oki, Japan earthquake and discuss the Tosolvefor theafter slip of the Tohoku-Oki earthquake we perform a damped Least Squaresinversion Blyure 53 We use the geodetic data shown in Figure 4 to invert for post-seismic slip models associated to the 2011 Tohoku-oki (Mw9.0) earthquake. Here we show
implications of this after-slip in the context of a future large earthquake in the Ibaraki region which lies to the south of the March 11, | §| with weights defined as the inverse of the misfit variances. We constrain the dip slip component of the d/»b | o an after-slip model that was selected as a representative model of the solution space of the inverse problem. A criteria of compatibility with independent
2011 event. Our after-slip models are constrained by onshore GPS time series. To infer the distribution of dlip, we adopt a non-negative after dlip to be non negative. We minimize the functional: ) e geophysical observationsin conjunction with the L-curve criteriawere used to select the strength of the regularization (damping parameter). After-slip occurs
least sguares approach, with a novel regularization that imposes a stronger correlation among neighboring patches in the regions of — W (G d 2 )\2 WoT 2 e | SRR 1 mostly downdip and south of the rupture region of the Tohoku-oki main shock. Note the compacity and rich spatial variation of the inferred after-dlip.
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spatially constant regularization, thisapproach permitsusto infer moredetail inthedistribution of slip wherethe model iswell constrained Where W . 1s the misfit weights matrix (inverse of covariance), G is the design matrix of the problem, 4o ?ﬁ%ﬁ?ﬁ% 1 1A Dy G EFAN T S \'ﬂ;\\ ‘ |
while at the same time limiting the number of artifacts introduced in the less constrained portion of the model. Our results indicate that m is the after slip , A is a parameter to define the strength of the regularization, and d is the vector of 32:?%?:‘ HR U | P BT &Y ¥y
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after-dlip occurs mainly downdip and south of the region that experienced large co-seismic slip during the Mw 9.0 event and also at a observations at the GPS sites. The form of regularization adopted is to minimize aweighted Laplacian  39f ‘%’gsé”‘ : . | A ) o e
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the Sanriku-Oki low seismicity region, believed to undergo aseismic creep close to plate convergence rate. Also, the shallower part of operator ( T ) applied to the fault slip distribution. Wr alows for a variable strength of the smoothing ) £ RS ‘ &Z N .g @@o -
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the megathrust at the Ibaraki region has, on average, around 1+ meters of slip during the first 6 months after the Tohoku-Oki mainshock. operator T, defined as a function of the sensitivity of the fault patches. . BBK E‘s‘;«;sj ;‘g%'% | o | . 3\:\ N :\\: | @8 @% ®)
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Although our analysis may indicate that the upper part of the megathrust at the Ibaraki region is undergoing post-seismic dlip, further The sensitivity of the fault patches (Ss Figure 5) is defined as the squared surface displacements, g§;§§' _13‘{%% XX \\:\ \E : ou:_:.
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study isrequired to accurately assess the risk of a great Earthquake at the sourthern portion of the Japan megathrust. The complexity of Integrated throughout the GPS network, due to an unit dislocation at the fault patch. We propose that the &l 3§§§;§§§§ | SN | 5 05 O, ﬁj
the inferred after dlip and its relationship to the distribution of co-seismic fault slip and seismicity, along with the geodetically inferred sensitivity can be interpreted as a measure of fault patch slip “resolution” as it indicates its capacity to . ﬁ;ﬁg%fﬁ - STy o o OF,°
.coupling models, suggests strong heterogeneity of in the spatial distribution of material properties on the megathrust. )| contribute to the fault slip model predicted displacements at the GPS network. Note the high variability ‘g;‘a;?%';é;é%’ 39N :‘;:‘:3 . o@o%' .'.@
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r - N\ | of Sk, 100 m of slip near the trench is equivalent to 1 m of slip at the coastline. I e S - L R 0op B2 T
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£ W= @l The net impact of the modulated smoothing Is to adjust the correlation length of the slip at the Fault patch Relative Sensitivity [(lz_oP-scal o) b R IR
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Before the Tohoku-oki earthquake the Tohoku region of the Japan Trench megathrust was considered to have a moderate seismic uniform (constant) Laplacian operator and with the sensitivity modulated Laplacian operator defined in this work. We use 2 synthetic datasets that ‘ : = NI\
hazard and many inter-seismic coupling models suggested that regions of significant fault coupling were broadly limited to regions that differ only in the realization of the random noise. Note _hOW the SenSi_tiVity r_egular Ization _al_i)l_e Us to recover 4 much more stable dlip distribution, an N
had experienced earthquakes over the last centuries - with either negligible or limited coupling in much of the region that slipped co-||f| overall rougher model while imposing stronger smoothing at the regions with lower sensitivity and to consistently achieve a better recovery of the
seismically during 2011. Thus, the Tohoku-oki earthquake underscored our need to improve our understanding and assessment of the target dlip distribution. The main advantage of the proposed regularization isthat we are able to make an interpretation of the obtained dlip distribution 40N
spatial variability in the slip budget integrated throughout the seismic cycle at subduction megathrust, essential for both theunderstanding | || at the regions with low sensitivity as alow resolution average of the true slip. The value recovered is close to the spatial average of the target slip.
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of the rheological nature of the megathrust as well as for seismic hazard assessment. We are particularly concerned with the region off- : 2 , , , , 2 , 2 x Y | ~—
shore Ibaraki, just south of the rupture area of the Tohoku-oki earthquake, where the potential for alarge earthquake is still unclear. . O"b
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Continuous GPS Data Processing
Raw data from cGPS sites Is processed using the software GIPSY (Japan) to produce positional time series for each site on the GPS 0 “0f ‘0 |
network. The positional time series contain a secular motion due to interseismic tectonic loading, earthgquake associated signals (co- and or
post- seismic), a seasonal term associated with weather related crustal loading and gravity, as well as anthropogenic signals such as ” il v —
changes in hardware, or location of each site.
We identify and separate the different signals in the positional time series by an iterative process in which a motion coherent to the : T ; 7N
whole continuous GPS network is also estimated and removed, allowing a precise estimation of the features present in the time series. | il il
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We use the GEONET time series to estimate the co- and post- seismic displacements Post-seismic displacements are estimated up to Sep 01, 2011. Note the change in direction of the g Va : .1€Y g VLY get Sip prougnne - 9 & S Nt i rheological parameters of the Japan trench megathrust fth ahrust i der t el its behavi
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