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Figure 1. Generalized map showing the southern Sierra Nevada-San Joaquin Basin
area highlighting surface features interpreted to reflect the three-dimensional
pattern in mantle lithosphere removal. As shown in Figures 2 and 5 the principal re-
moval mechanism that effects surface geology is the delamination of the arclogite
root from the base of the felsic crust. Based on the Figure 2 synthesis of seismic
data we designate the locus of separation of the root from the crust as the de-
lamination hinge, which is projected onto the map surface as the hinge trace. The
O-4 Ma delamination volcanics consist of a bimodal suite with basaltic members
variably enriched in lithospheric components. The anomalous thermal transient
corresponds to the area of spatial overlap between extremely low basement heat
flow, typical of the axial to western Sierra Nevada, and the occurrence of humerous
warm and hot springs and wells in the exposed batholith, and hot oil fields in the
basin.
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Introduction

We present an overview of geologic and seismic evidence for the removal of cool mantle litho-
sphere that constitutes the fossil mantle wedge that formed beneath the southern Sierra
Nevada batholith in the Cretaceous. Based on mantle xenolith data the Cretaceous wedge con-
sists of two principal units, eclogitic cumulates genetically related to the overlying batholith,
which we term arclogites (after Anderson, 2005), and underlying enriched and partially vola-
tized peridotites. The arclogites accumulated from ~40 to 75 km depths in the wedge, and the
underlying peridotites are know to have extended to at least ~125 km depths beneath the
batholith. To this we add a review of the thermo-mechanical model published in Le Pourhiet et al.
(2000) and Saleeby et al. (2012) that explores the dynamics and surface manifestations of
the removal process along a NE-SW transverse section across the batholith and wedge. We then
review geological observations of volcanism, heat flow, rock and surface uplift, and tectonic sub-
sidence that reflect the predictions of our preferred thermomechanical model along the trans-
verse model trace, as well as reveal a time transgressive pattern in the three-dimensional re-

moval process.
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Figure 2. Synthesis of seismic P-wave tomography, refraction and receiver function data along
transverse (A), oblique (B) and longitudinal (C) profiles (Fig. 1) as compiled in Saleeby et al.
(2012). We interpret the dVp>47% fast volume as primarily a compositionally controlled anomaly
arising from the arclogite root, and the dVp 1-47% fast volume as a thermally controlled velocity
anomaly arising from the Rayleigh-Taylor instability that the delaminating arclogite root is
nested in. The dVp<-1% volume is interpreted as incipiently melted ascended asthenosphere
with the negative rf conversions reflecting melt concentrations. D is a three-dimensional render-
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Figure 5.  Summary of constraints for the timing of principal late Cenozoic
rock and surface uplift for southern Sierra Nevada region in relation to active
hormal faulting, anomalous subsidence and delamination hinge trace.

Resolved rock uplift over the region of the delamination bulge is at
1000 m scale.
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Figure 3. Preferred thermo-mechani-
cal model results. The model is in-
tended to simulate a thermal pertur-
bation to the base of the cooled litho-
sphere by the northward opening of
the Pacific-Farallon slab window Ma
(Fig. 1). A) summary of initial and |
boundary conditions. B) Preferred ™
model results through forward model
time. Essential features are initial
mobilization as an RT instability,
lithospheric break-off in the Death
Valley area at ~10 m.y., suction of alower crust into the lower Sierran crust by root
loading, and then rapid W to E root delamination starting at ~14 m.y., which we corre-
late to 7-5 Ma geologic time.
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Figure 4. Predictions for vertical displacements in the Earth’s surface from preferred
model. These translate into rock/surface uplift with no exhumation and tectonic sub-
sidence. A) Results for entire model run with initial topographic step along west side
of batholith (Fig. 3A). B) Results for post-10 m.y. displacements hung on 10 m.y. pro-
file from A, as to simulate uplift and subsidence patterns following lithospheric break-
off formation of Sierran microplate dated geologically at 10X2 Ma.
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Figure 6. Three-dimensional flexural model arising from current
configuration of the arclogite root load (Fig. 2) as attached be-
nheath Tulare Basin (Figs. 1 & 5). A) Root loading geometry. B) ~ 100 km
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Figure 7. Contemporary vertical velocity field across the
southern Sierra Nevada as determined by GPS monu-
ments, INSAR, and level line data, and late Quaternary ex-
humation rates in Cenozoic strata along western Sierra
Foothills (Fay et al., 20086; Sylvester, 2008; Hammond et

al., 2010; and Cecil et al., 2012). Also shown is distribu-
tion of late Quaternary lake beds of the San Joaquin Basin.
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Figure &. Longitudinal structure sections for eastern (a)
and axial (b) San Joaquin Basin highlighting anomalous sub-
sidence related to root load. Selected subsidence curves
display anomalous subsidence (C-F) in comparison to re-
gional Great Valley patterns (A & B). Note that basement
beneath Kern arch consists of normal fault block tilted
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Figure 10. Simplified reconstruction of the pro-
gression in three-dimensional delamination
across the southern Sierra Nevada region. A)
Mio-Pliocene (6-5 Ma, ~14 m.y. model time)
showing principal E to W phase of delamination
with resulting Sierra Nevada uplift and San Joa-
quin Basin subsidence, including area over the
future Kern arch. B) continued E to W delamina-
tion over late Pliocene-early Quaternary time
(3-1 Ma, ~17-20 m.y. model time) with partial
necking of root fragment promoting focused ca.
3.5 Ma enriched basaltic volcanism by melting of
descending root fragment plus entrained litho-
spheric peridotite and possible felsic crust.

Necking event focuses residual root load to
south instigating the S to N pattern of delamina-
g;’fglbn'; - tion. C) Late Quaternary (<1 Ma) phase of S to N
in RT updraft root delamination with rapid epeirogenic uplift of

Kern arch as root separates from underlying
M lower crust, and the resulting partitioning off of

the contemporary Tulare Basin.





