Improved Characterization of Megathrust Supercycles, Mentawai Islands, Sumatra
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Large sections of the Sunda megathrust have failed progressively over the past decade in an
extraordinary earthquake sequence.One question of great humanitarian and scientific
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megathrust ruptures,
with some slow slip
between seismic events.
Data are possibly
sufficient for a time-series
model (see future work).
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ruptures or for significant
slow slip. Time-series
modeling of interseismic
and coseismic slip before
and between the ruptures
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Blue numbers are totals
whereas black numbers
indicate total uplift to be
apportioned between both
ruptures. Contour interval is
20 cm. The northern end of
the uplift likely tapered off
over Sipora, though itis as
yet unclear how far it
extended.

Subsidence rates (in mm/yr)
measured over the mid to late
20th century suggest a peak
of about 10 mm/yr trending
along the southwest edge of
the islands. This pattern is
directly responsible for the
derived pattern of 1833 uplift.
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17th-century coral records. This will allow us
05 to compare the behavior of the megathrust

. - A
uncertainty are totals in 1760 1780 1800 1820 1840

meters whereas those
without are minima. Black
numbers indicate total uplift
to be apportioned between
both ruptures. Contour
interval is 20 cm.The tapering
southern end of the uplift
pattern is well resolved.

or postseismic vertical deformation. We
measure net uplift by comparing pre- and
post-earthquake HLS (top), and net
subsidence by comparing pre-earthquake
HLS to the extreme low tide (bottom).
Adapted from Briggs et al. (2006).

Example of a slab cross-section, showing
the annual band growth history and the
corresponding relative sea level over time.
This coral demonstrates slow interseismic
subsidence before and after a coseismic
uplift event. From Natawidjaja et al. (2006).

Post-1797 EQ
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during that period to its behavior in the past 5
years, hopeful that the events of the 17th
century will yield insights into megathrust
behavior during the next few decades.
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A preliminary PCAIM model demonstrates how the different
signal sources may be decomposed into spatial and temporal
component pairs.




