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Plio-Quaternary subsidence and exhumation of the southeastern San Joaquin Basin, CA, in
response to mantle lithosphere removal
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A    Regional east to west
        delamination

B    Mega-boudin break-o�,
       initiation of ca. 3.5 Ma
       volcanic pulse

C    Northward components 
      of delamination initiate

D    Active northward delamina-
       tion, initiation of southern
       Sierra - Kern arch thermal
       transient
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Figure 1. Delamination and topography

Thermomechanical models of mantle lithosphere removal from beneath the 
southern Sierra Nevada region, California, predict a complex spatio – temporal 
pattern of vertical surface displacements. We evaluate these models by using (U-
Th)/He thermochronometry, together with other paleothermometry estimates, 
to investigate such topographic transients. We target strata of the Kern arch, a 
crescent-shaped uplift located in the SE San Joaquin Basin. Kern arch stratigraphy 
provides a unique record of subsidence and exhumation in a sensitive region im-
mediately adjacent to the delaminating mantle lithosphere at depth. 

Oblique DEM view of so. Sierra 
Nevada topographic surface from 
the west, lifted o� of underlying 
upper mantle structure 
(tomography from Reeg, 2008). 
High velocity zone is interpreted 
as actively delaminating Sierra 
Nevada arclogite, with delamina-
tion hinge approximating locus of 
separation from lower crust (after 
Saleeby et al., 2012, 2013). Note 
Kern arch and Tulare Basin posi-
tions relative to anomaly and 
delamination hinge.

Conceptual model of the 3-D delamination of the arclogite root from the Sierra Nevada batholith. A: Early 
stages of regional east to west delamination. B: hypothetical necking o� of a mega-boundin, which promoted 
ca. 3.5 Ma volcanism. C: initiation of S to N components along southern end of residual root. D: continued N to S 
delamination progressing to the current state of the Isabella anomaly suspended southeasteard into the deeper 
mantle from the area of residual root attachment under Tulare Basin. Figure from Saleeby et al. 2012.

2. Delamination and vertical surface dis-
placements
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Plots of surface topography at three time inter-
vals, showing an inital phase of subsidence, 
followed by uplift. In this model, topography 
signals are symmetric about the center of a 
dripping mass. The model assumes the mantle 
lithosphere instability does not migrate with 
respect to the overlying plate. 

Comparisons of vertical displacement of the 
eastern Sierra crest and Tulare Basin center 
over 24 m.y. of model time as predicted by a 
range of models. The model preferred by 
Saleeby et al. predicts a minimumof 800 m of 
rock uplift at the Sierran crest and 500 m of 
subsidence in the Tulare Basin in mid-Pliocene 
- Quaternary time.
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Figure 6. Stratigraphy
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4. Cryptic subsidence in the Kern Arch
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Figure 15. Subsidence curves

eustatic sea level tectonic subsidence

total subsidence

0              20             40             60              80            100           120
eU

A
H

e 
ag

e 
(M

a)

radius = 50 um

depositional age

FW-3     1387 m

peak T = 75 °C

80

70

60

50

40

30

20

10

B

Figure 8. Fuhrman well
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A recent cryptic subsidence event was recognized on the basis of:

1) mechanical granulation textures
2) matrix chloritization (see photomicrograph)
3) albitization of plagioclase

These textures and / or chemical signatures develop at temperatures 
corresponding to depths that are much greater than those at which 
the rocks presently reside, indicating a pulse of heating and subse-
quent exhumation (see plot top right).
Likewise, anomalously high geothermal gradients observed in Kern 
arch wells suggest uplift and truncation of the local geotherm (see 
plot at left)

7. Surface transients in the Kern arch - Tulare 
Basin region 
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Figure 9. Rich�eld AHe results
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Detrital apatites recovered from Kern arch well samples are assumed to 
be derived from the southern Sierra Nevada batholith. 
--> A pre-depositional cooling rate is based on known Cz cooling / ex-
humation of the southern batholith. 
--> Depositional ages are fairly well constrained by fossil fauna and 
dating of interbedded ashes.
--> Post-depositional burial and heating is from calculated subsidence 
curves. The youngest preserved strata are 6 Ma; Plio-Quaternary sub-
sidence cannot be constrained by conventional stratigraphic analysis.

Low - [eU] apatites are more sensitive to thermal resetting, creating 
positive age - [eU] relationships in a detrital suite. The shape of that 
relationship and the distribution of reset ages is dependent on: 1) the 
peak temperature reached, and 2) the duration at that temperature.

The Kern arch is a crescent-shaped uplift located along the low western �ank of the southern Sierra 
Nevada. It is adjacent to the Tulare Basin, an area of modern anomalous subsidence centered above 
the area of residual crustal attachment of the delaminating arclogite at depth. Basinal deposits of the 
Kern arch region comprise up to 4 km of Eocene - Pleistocene marine and nonmarine strata , which 
unconformably overlie Early Cretaceous Sierra Nevada basement. Although it has been proposed that 
the Kern arch is a basement salient which existed since the Paleocene, we argue that it is an entirely 
recent (Neogene) feature that is associated with Plio-Quaternary removal of mantle lithosphere from 
beneath the region.

Detrital apatite He ages can only be explained by a post - 6 Ma heating event, 
which we assert is a funtion of rapid burial in the SE San Joaquin Basin. Real data 
from the Fuhrman (green) and Rich�elds (purple) are shown in the panels above. 
The best �t thermal models to those data indicate heating to temperatures be-
tween 70 - 88 °C at 1 Ma. This requires 6 - 1 Ma subsidence of ~ 1 - 2.5 km, fol-
lowed by  rapid post - 1 Ma exhumation of Kern arch rocks to their present burial 
temperatures / depths.  

Subsidence and exhumation estimates tabulated for all wells stud-
ied. Estimates from the Smoot-1 well are based on vitrinite re�ec-
tance data, which indicated that rocks as shallow as ~ 350 m today 
were buried to temperatures of 69 - 71 °C.
 
These estimates are also represented in subsidence curves for the 
Kern arch shown below.  Note that The timing of rapid subsidence 
and uplift of the arch is coincident with increasing subsidence rates 
in the Tulare Basin.


