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Response of  rate-and-state faults to periodic variations
Thomas Ader, Jean-Philippe Avouac, Jean-Paul Ampuero, Nadia Lapusta

California Institute of  Technology, Department of  Geological and Planetary Sciences, Pasadena, CA 91125

Abstract
Periodic loading has been reported to induce a detectable response on both seismic and 
aseismic faults. Slow slip events and associated non-volcanic tremor in Cascadia, Japan 
and Parkfield are sensitive to oscillatory stress perturbations induced by tides or seismic 
surface waves. On the seismic side, the microseismicity rate in the Nepal Himalaya ap-
pears to be modulated by the surface load variations of  about 3kPa induced by the hy-
drological cycle, while no correlation is observed with solid Earth tides, although they 
induce stress variations of  comparable amplitude. Such a decrease of  sensitivity to peri-
odic loads with decreasing period has also been observed in lab experiments. In the 
case of  non-volcanic tremors, we show through analytical approximations and numeri-
cal simulations of  the reponse of  1degree of  freedom spring-slider system that rate 
strengthening fault areas that are near velocity neutral at steady-state, i.e. ∂µ/∂lnV≈0, 
are highly sensitive to periodic loading within a certain range of  periods, which depends 
on the frictional properties. These aseismic periodic transients can in turn induce a peri-
odic modulation of  the tremor activity. To assess the conditions needed to explain the 
Himalayan seismicity observations, we consider velocity weakening faults. We find that 
the behavior of  a simple 1D spring-slider system cannot explain the lower sensitivity to 
semi-diurnal than to annual load variations. We suggest that, in that case, the finite di-
mension of  faults plays a key role. To support this idea, we simulate the response of  a 
finite size fault obeying rate-and-state friction, using the Boundary Integral CYCLe of  
Earthquakes (BICYCLE) code. These simulations yield a period dependent response to 
periodic stress variations alike that observed in Nepal and in lab experiments.

1 Rate-strengthening faults: sensitivity 
of  non-volcanic tremors

!"" !"! !"# !"$ !"%

!" !

!""

!"!

|
V

| /
V

ss

 

 

∆S1

(a − b)σ

∆S1

aσ

˙∆S
1˙τs
s

∆S2

(a − b)σ

∆S2

aσ

˙∆S
2˙τs
s

T 
= 

T a

T 
= 

T Q

T 
= 

T

Simulation
Linear model
Asymptotic behavior

!"
"

!"
!

!"
#

!"
$

!"
%

&#

&%

"

&%

&#

Period: T/T

 (
V

 /
)

 

 
Simulation 1
Simulation 2
Linear model
Asymptotic behavior

ΔS sinωt

!" ! !"" !"!

!""

!"#

!"$

!"%

!"&

|
V

| /
V

ss

 

 
Simulation
Linear model
Exponential model (Coulomb)
Exponential model (shear)

!"
!

!"
"

!"
!

#$

#%

"

#%

#$

S / A

 (
V

 /
)

k

Response of  a spring-slider with rate-strengthening friction to a harmonic 
Coulomb stress perturbation:

Response of  a spring-slider system to small harmonic Cou-
lomb stress perturbations of  different periods and ampli-
tudes ΔS1 = 0.9 kPa  and ΔS2 = 15 kPa. The system is un-
dergoing constant loading at velocity Vss = 0.02 m/yr under 
mean normal stress σ = 5MPa. The normalized spring stiff-
ness is k/σ = 0.002 m-1. The other parameters are: μss = 0.7, 
a = 0.004, b = 0.0036 and Dc = 0.2 mm. Upper panel: Am-
plitude of  the creep rate variations. The black lines with cir-
cles represents the results of  the simulations (one circle for 
each period tested). The dashed grey lines with triangles 
represent the small perturbation approximation for each 
simulation while the dashed black lines indicate the corre-
sponding asymptotic behavior of  the system with equations 
indicated on the plot. The critical periods T

θ
, TQ and Ta are 

also indicated on the plot. Lower panel: Phase difference 
between the creep rate and the Coulomb stress variations.

Non linear response of  a spring-slider system to small 
harmonic stress perturbations for different amplitudes. 
The period T of  the perturbation is such that T/TQ =  
Ta/T = 2.5. The parameters are the same as in the pre-
vious figure, except for the fault parameter b = 0.00385 
and Dc = 0.5 mm, so that A = |A(ω)| = 1.08(a-b) ≈ 
(a-b). The meaning of  the different lines is given in the 
legend. Upper panel: Amplitude of  the creep rate varia-
tions. The expression for the exponential models is in-
dicated in the figure, taking either the Coulomb stress 
or only the shear stress, and replacing (a-b) by the actual 
value of  A. The linear approximation is also indicated 
on the plot. The lower panel shows the phase difference 
between the creep rate and the Coulomb stress varia-
tions.
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For velocity neutral faults (a-b ≈ 0), amplification possible of  the perturba-
tion for the right range of  periods. Possible explanation for the sensitivity 
of  non-volcanic tremors to tides and passing seismic waves without resort-
ing to extremely low normal stresses. 
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2 Rate-weakening faults: sensitivity 
of  earthquakes

Dieterich (1994) model

Finite fault model (BICYCLE)

Spring-slider system under rate-weakening rheology. Only the timings of  
seismic events are modified.
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Magnitude distribution of  events happening on an 
unperturbed fault. The fault naturally has some 
complexity, but most of  the events are M ≈ 0.94.

Slip on the fault, with magnitude of  events indicat-
ed on each event.

ΔτAσ
τa

Δτ
.
.

Amplitude and phase of  the vari-
ations of  seismicity rate from 
finite faults simulations and Di-
eterich (1994) model.

Spectrum indicating the natural 
periodicities in the timing of  
events on the unperturbed fault.

Amplitude and phase of  the variations of  seismicity rate from finite faults simulations and Dieterich (1994) model for large and small events separatly.

Details for 3 perturbed cases, indicated on the plot above. Upper plot: history of  slip on the fault. In the cases a and b, the perturbation causes the fault 
to have a steady behavior made of  large M ≈ 1.05 events, followed by 2 to 4 small events. Lower plot: Distribution of  magnitudes for each case. In the 
cases a and b, the distribution is altered by the perturbation. Inset: seismicity rate stacked over a period and fit giving the amplitude and phase.

In the finite fault model, the perturbation does more than simply modifying the timing of
events, it actually impacts on the popula-
tion of  events that the fault produces. It 
can both stabilize the fault (above case) or 
create complexity (case to the right).
Behavior of  a fault with a smaller rate-weakening patch, unper-
turbed, and under a harmonic perturbation of  period T = 0.02 yrs.

Conclusion
For a rate-strengthening rheology, a simple spring slider system shows that under velocity neutral con-
ditions, a harmonic perturbation falling within the right range of  periods can be amplified and result 
in large creep rate variations on the fault. This could explain the observed correlation of  non-volcanic 
tremors with tides or passing seismic waves. For a rate-weakening patch, a finite fault model predicts 
a much higher sensitivity of  the seismicity to stress perturbations than a simple spring-slider system 
would. This comes from the effect that a stress perturbation can have on the nucleation zone. 
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