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Introduction 
Numerical studies of plate tectonics have previously suffered from poor 
resolution until recent models using Adaptive Mesh Refinement (AMR) in 
Stadler et. al (2010), and Alisic et al. (2012). While the studies provided 
resolution as fine as 1km at plate boundaries, a more accurate model can be 
attained by using inverse methods that are applied to the equations that 
govern mantle convection.  
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The inverse problem is given as follows where we seek to minimize the misfit 
in surface  velocities given in (1), where 𝚪 is the prefactor of contained in the 
rheological law we are using.   

If one takes variations with respect to the forward velocity and pressure 
(u,p), the forward equation (2) is obtained.  However, if variations with 
respect to the adjoint velocity and pressure is taken, one obtains the adjoint 
equation in (5). 

The PDE constraint in (2) is the nonlinear Stokes equations, with the 
nonlinearity arising from the viscosity dependence on the velocity. The 
viscosity 𝜼 𝒖  is given below in (3). It should be noted that the prefactor 𝚪 is 
given in the form of an exponential to ensure that it remains positive at 
each iteration during an inversion. 

Numerical Experiments 

Subject to the PDE constraints given in (2) with free slip boundary conditions. 
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Case II: Multiple Subducting plates and weak zones with varying pre-               
   factors 

Numerical Methods 

Future Directions 
• Forthcoming investigations will use a non-Newtonian rheology with 

yielding that is widely used for mantle convection problems. 
•  Investigate adding noise to the plate velocities to test the limits of 

how well we can recover the strength of the weak zones.  
• Apply these inverse methods to global plate motions and infer the 

strength of plate coupling at convergent plate boundaries. 

Algorithm Details 
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To set up the inverse problem, we need to define the Lagrangian L defined in 
(4), which is the sum of the cost functional and the weak form of (2).  

          𝐿 𝑢, 𝑝 = 𝐽 +  𝜂 𝑢 𝜖 𝑢 : 𝜖 𝑣 − 𝑝𝛻 ⋅ 𝑣 − 𝑞𝛻 ⋅ 𝑢 − 𝑓 ⋅ 𝑣 𝑑Ω       
(4) 
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Subject to the boundary conditions given in (6), where 𝒏  denotes the normal 
vector . 

Moreover, to obtain the Newton system, one will need to take  the second 
variations of  (4). Doing so, and using the Gauss-Newton approximation of 
the Hessian leads to the system of equations to be solve for the incremental 
values 𝒖, 𝚪, 𝒗  𝐢𝐧 𝟕 . 

In order to invert for the weak zone values at plate boundaries, we 
need to solve the forward and adjoint equations given in (2) and (5). 
Since the forward equation is nonlinear , we would need to used  
Picard iteration.   

Solve  the weak form 
of (2) with an initial  
𝜂0  for 𝑢𝑘  , 𝑝_𝑘. 

Update the viscosity 
given in (3) with the 

velocity obtained 
from solving (2). 

However, Picard Iteration can be slow when converging to the 
actual solution. Therefore, we can solve (2) by posing the problem 
as an optimization problem like (1).  This minimization problem is 
given in (9).  
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To solve (8), we use an inexact Newton Method  with 
backtracking line search. This line search is the Armijo line search 
given below in (10). 
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      𝐻Γ = −𝑔Γ     

Using Block Matrix Algebra, (7) amounts to solving (8). 

                       𝑑𝑘+1= 𝑑𝑘 + 𝛼𝑘 𝑑                                       (10) 

Where, 𝜶𝒌 is given below by (11). 

       𝛼 0= 1, 𝜌 = 0.5     
                 𝛼 𝑘 = 𝜌𝛼𝑘−1                                         (11) 

We only accept a solution for the weak factor if the following 
condition in (12) is satisfied. 

           𝐽(Γ𝑘+1) ≤ 𝐽(Γ𝑘) + 𝑐𝛼𝑘𝑔𝑘
𝑇  𝑑𝑘 
                    (12) 

Solve for incremental quantities for Γ𝑖  

Solve Adjoint Equation 

Solve Forward Equation with Γ𝑖    

Numerically, compute gradient  g𝑖    

Initialize guess for Γ𝑖 

While no descent compute (10) 

While max iterations isn’t exceeded    

Check if (12) is satisfied. 

Solve Forward Equation with Γ𝑖   

 

IF No;  Compute (11) 

 

If Yes 

Solve  the weak form of (2) with Newton to 
initialize u𝑑𝑎𝑡𝑎. 

We have developed a robust and scalable method to invert for the 
prefactor of the weak zone. The next phase would be to apply this 
methodology to global models with realistic temperature fields etc. as 
shown in Fig. 8. 

Figure 8 : Example of global models with fine scale resolution that will be used for 
inversion taken from Alisic et. al.(2012) 

An example of how varying parameters in the rheological law can lead to 
mismatches in surface velocity is shown in Fig. 9 below. By inverting for 
the values of the weak zones where we minimize the mismatch in said 
surface velocities, we can achieve a better fitting model with the 
properly constrained surface velocities. 

Figure 9: Example of the misfit of surface velocities for global models for various 
perturbations of rheological parameters taken from Alisic et. al.(2012) 

Additionally, we will look at regional models like the ones shown below 
in Fig. 10 where there is better data coverage in order for the quality of 
the inversion is better due to more information being available in certain 
regions. 

Figure 10: Various Regional models with their corresponding effective viscosity and 
velocity fields, taken from Alisic et. al.(2012) 

For Case II, we look to invert for the prefactors for multiple weak zones as 
shown below in Fig. 3. This type of problem is one that we will be interested 
since it is geometrically close to the geophysical problem posed.  

Figure 3 : Domain consisting of the prefactors defined on each stencil. 

We use the algorithm presented previously to invert for the prefactor of each 
weakzone given in (3). It should be noted that the smallest prefactor is the 
weak zone on the far left while, the highest prefactor is on the far right. The 
effective viscosity plot is given in Fig. 4 below.  

Figure 4 : Effective Viscosity plot after the final inversion. 

The plot of the inverted surface velocities in comparison for the true surface 
which shows we are able to essentially recover the exact surface velocity as 
shown in Fig. 5. 

Figure 5 : Surface Velocity Comparison. 

In Fig. 6, we are able to recover the true prefactors for each weak zone almost 
exactly by 2 Gauss-Newton Iterations. 

Figure 6 : Prefactor Inversion vs.  Iterations 

In Fig. 7, we are able drive the misfit of surface velocities  defined in (1)  to 
significantly small values. 

Figure 7 : Misfit of Surface Velocities 

Case I: Weak Zone with Subducting Plate   

For Case I, there is a reduced viscosity zone to the left of the subducting 
plate, which acts essentially like a ridge as shown in Fig. 2(a). For this case we 
invert for the prefactor of the ridge, plate and background. We are able to 
recover the surface velocity Fig.2(b) almost exactly. In this case, we started 
with guesses of the prefactors of the slab, weak zone and background that 
are substantially off from the true values, but are still able to recover the 
exact values by iteration 14 in Fig.2(c), while driving the misfit of surface 
velocities in (1) to a substantially small values shown in Fig. 2(d). 

Figure 2 : (a) Eff. Viscosity (b) Surface Velocity Comparision (c) Inverted Quantities vs. 
Iteration (d)Misfit of Surface Velocities vs. Iterations. 

(a) (b) 

(c) (d) 

The Details of the Algorithm for the inversion of the prefactors for 
weak zones are given in the flow chart below. 

Invert for 

In looking at the adjoint equations in (5)-(6), one can see that the driving 
term is the mismatch in the surface velocities that is driving the equation as 
seen in (6). 

As a comparison, we did a test case for a sinker for n=3, and the 
results are shown in Fig. 1, where we can see the residuals 
decrease faster  using a Newton’s method vs. Picard Iterations. 

Figure 1 : (a) Eff. Viscosity for a sinker (n=3) ( b) Residual Comparision 

(a) (b) 
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