Wave velocities of enstatite at high-pressures: Implications for chemical variations in the upper mantle

Dongzhou Zhang & Jennifer M. Jackson Seismological Laboratory, Geological and Planetary Sciences, Caltech

1. Introduction

Seismic "X" discontinuity:

Depth range: 240-340 km Shear impedance increase: 3-7.5% Widespread, but not global < Large depth variation</p>

Potential relationship to orthoenstatite (Oen) transitions

2. Methodology

Nuclear Resonant Inelastic X-ray Scattering: APS Sector 3-ID **X-Ray Diffraction: APS Sector 3-ID & ALS Sector 12.2.2** First-principle **D**ensity **F**unctional **T**heory calculation

Figure 2: NRIXS and XRD setup.

UI: ultrasonic interferometry; BS: Brillouin spectroscopy; ISLS: impulsive stimulated light spectroscopy.

Figure 5. Comparison of calculated shear wave velocities from candidate upper mantle petrological models (1400°C adiabat) with seismic profiles. At P >10 GPa: assuming C2/c transition (dashed curve, Kung et al., 2005); speculating that the $P2_1/c$ transition occurs (dotted curve, this study). Seismic "X" discontinuity observed (shaded region, Revenaugh and Jordan, 1991; Bagley and Revenaugh, 2008). Global seismic models: PREM (230–390 km in depth, 7.5–13.0 GPa in pressure, interpolated between reported values, Dziewonski and Anderson, 1981) and AK135 (Kennett et al., 1995). Regional seismic models: SNA (Grand and Helmberger, 1984), TNA (Grand and Helmberger, 1984), ATL (Grand and Helmberger, 1984), and PAC06 (interpolated between reported values, Tan and Helmberger, 2007). Shear velocity jump required for a seismic reflection with 1.5% reflection coefficient in a pyrolytic mantle (blue scale at 300 km, Bagley and Revenaugh, 2008).

4. Conclusions

 \circ Experiments done at high-pressures to determine V_{P} , V_{S} , and density of iron-bearing enstatite Phase transition occurs around 12 GPa (360 km depth), characterized by low velocities

Figure 3: The DFT-calculated phonon DOS (at 0 K) and measured Fe partial projected phonon DOS for Oen at ambient pressure (at 300 K): (a) total phonon DOS of Mg₂Si₂O₆ Oen, (b) partial phonon DOS for 25% Mg replaced by Fe on the M1 site, (c) partial phonon DOS for 25% Mg replaced by Fe on the M2 site, and (d) measured Fe partial projected phonon DOS for En87 at 300 K.

Note global models do not agree – regional studies are crucial to understand chemistry

Enstatite-rich rocks not as low as active tectonic regions, but lower than stable regions

Selected references

Zhang, D., J.M. Jackson, B. Chen, W. Sturhahn, J. Zhao, J. Yan, and R. Caracas (2013): Elasticity and lattice dynamics of enstatite at high pressure, JGR-Solid Earth, 118, 4071-4082 Jackson, J.M., E.A. Hamecher, and W. Sturhahn (2009): Nuclear resonant X-ray spectroscopic study on (Mg,Fe)SiO₃ orthoenstatites, Eur. J. Min., 21, 551-560

Acknowledgements

