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Introduction 
Plate motion is primarily controlled by buoyancy (slab pull) which 
occurs at convergent plate margins where oceanic plates undergo 
deformation near the seismogenic zone. Yielding within subducting 
plates, lateral variations in viscosity, and the strength of seismic 
coupling between plate margins likely have an important control on 
plate motion. We wish to infer the inter-plate coupling for different 
subduction zones along with the yield stress and strain rate 
exponent, and develop a method for inferring such quantities as a 
PDE-constrained optimization problem, where the cost functional is 
the misfit in plate velocities and is constrained by the nonlinear 
Stokes equation. We find that we can recover the plate boundary 
coupling along with either the yield stress or strain rate exponent in 
the upper mantle. However,  it is harder to recover the plate 
coupling, yield stress and strain rate exponent without imposing a 
priori information. Moreover, we can recover the plate coupling in a 
continuously deforming region.  
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The inverse problem is given as follows where we seek to minimize 
the misfit in surface  velocities: 

The PDE constraint is the nonlinear Stokes equations, with the 
nonlinearity arising from the viscosity dependence on the velocity. 

The viscosity 𝜼 𝒖, 𝝈𝒚, 𝒏, 𝑻  is  
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In order to infer the rheological parameters, we need to solve the second 
order system given below.  Rheological parameters such as the strain rate 
exponent, yield stress and coupling factor play an integral role in how 
couple plate boundaries are.  

When plate coupling, yield stress, and strain rate exponent are unknowns, we are 
not able to recover the true rheological parameters. 

The trade-off in this poorly constrained case shows that an increase in the strain 
rate exponent needs an increase in yield stress to slow plate. 

Case I: Inferring Plate Coupling with Back Arc Spreading   

For all case studies , we consider a subduction zone system with three 
subducting oceanic plates. The left most plate penetrates into the lower 
mantle, while the middle plate does not reach the lower mantle, and the 
right-most plate just touches the upper-lower mantle interface. Additionally, 
there is back-arc spreading to the left of the middle subducting plate. 

Observational data is usually contaminated with noise. Moreover, 
the model of the physical system has uncertainties. This can be 
represented as: 

𝑢 = 𝑢𝑑𝑎𝑡𝑎 + 𝜙       

Where we assume that the noise is Gaussian and i.i.d (independent 
and identically randomly distributed). The covariance matrix from 
noise is: 
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With the posterior distribution being: 
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The solution to the minimization problem gives us the maximum a 
posteriori point (MAP), which is the mean of the Gaussian 
approximation  of the posterior distribution. Since plate velocities 
are give by kinematic models (MORVEL, NUVEL-1A, etc.) we need 
to use a similar way to impose surface velocities. We ascribe a  
constant to regions of a plate for the surface velocity given by the 
RMS of the velocity in that region. 

Case II: Inferring Plate Coupling 

For this case we infer the plate coupling and the yield stress. We match the 
surface velocity and recover the plate coupling and yield stress. 

Case II: Plate Motion sensitivity to plate coupling  

Case II: Bounding the Coupling  

With the adjoint equations: 

With boundary Conditions: 

We compute the shear stress from the rheological relationship:  
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Figure 1: Subduction Zone with seismogenic interface  

Figure 2 : Effective Viscosity with velocity Field 

Here, with known strain rate exponent and yield stress, we infer the plate 
coupling for each subducting plate. We are able to recover the true shear 
stresses in each plate boundary with synthetic data imposed on each plate 
while constraining plate motion to observed data. 

As one makes plate boundaries weaker, there reaches a point where the plate 
motion becomes insensitive to the plate boundary coupling. As shown below, 
after a value of approximately 𝚪𝒊 = 𝟏𝟎−𝟏𝟐, the RMS of the surface velocity 
reaches a steady state. Moreover, as plates become more coupled, such that the 
system of plates move together as one plate, one reaches another steady state 
where the RMS  surface velocity reaches a minimum.  

To minimize the extreme tradeoffs in rheological parameters, we bound the plate-
coupling away from the insensitive region by prescribing the weak factor in each 
plate boundary to be greater than 𝟏𝟎−𝟏𝟎. Doing so, we are able to recover the 
correct order of plate boundary strength. 
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Recovery of Plate Coupling in a 
continuously deforming region 

There are regions of the earth that undergo continuous deformation which 
can be seen from GPS velocity maps and strain rate fields. We explore a 
similar case where one of the plate boundaries is continuously deforming. 
Moreover, we assume that the velocity data for the deforming boundary is 
contaminated with noise: 
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The weakening factor and its relative error from the inversion are shown in 
the figures below. 
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Subject to the nonlinear Stokes equations and free slip boundary 
conditions. 

We are able to recover the shear stress in all plate boundaries as shown 
below. 

Figure 9 : Weakening factor (𝒍𝒐𝒈𝟏𝟎) of the right most weak zone (continuously 
deforming) (b) relative error (𝒍𝒐𝒈𝟏𝟎) of inferred weakening factor of continuously 

deforming region.  
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Figure 8 : Surface Velocity: Red lines denote observed data (b) Zoom in of velocity data 
of deforming boundary (red dots denote observed velocity contaminated  with 5 

percent noise).  

a) 

b) 

Figure 10 : Inversion for shear stresses in each plate boundary.  

Figure 3: Recovered Shear Stress 

Figure 4:(a) Recovered Shear Stress (b) Recovered Yield Stress 
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Figure 6:(a) Recovered Shear Stress (b) Recovered Yield Stress (c) Recovered strain rate 
exponent 

Figure 7:(a) Recovered Shear Stress (b) Recovered Yield Stress (c) Recovered strain rate 
exponent 
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Figure 5: Plate Motion Sensitivity Plot 
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