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1. Introduction and Motivation

Thermomechanical models of mantle lithosphere removal from beneath the
southern Sierra Nevada region, California, predict a complex spatio — temporal
pattern of vertical surface displacements. We evaluate these models by using (U-
Th)/He thermochronometry, together with other paleothermometry estimates,
to investigate such topographic transients. We target strata of the Kern arch, a
crescent-shaped uplift located in the SE San Joaquin Basin. Kern arch stratigraphy
provides a unique record of subsidence and exhumation in a sensitive region im-
mediately adjacent to the delaminating mantle lithosphere at depth.
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Conceptual model of the 3-D delamination of the arclogite root from the Sierra Nevada batholith. A: Early
stages of regional east to west delamination. B: hypothetical necking off of a mega-boundin, which promoted
ca. 3.5 Ma volcanism. C: initiation of S to N components along southern end of residual root. D: continued N to S
delamination progressing to the current state of the Isabella anomaly suspended southeasteard into the deeper
mantle from the area of residual root attachment under Tulare Basin. Figure from Saleeby et al. 2012.

2. Delamination and

vertical surface dis-

Comparisons of vertical displacement of the
eastern Sierra crest and Tulare Basin center

over 24 m.y. of model time as predicted by a
range of models. The model preferred by
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rock uplift at the Sierran crest and 500 m of
subsidence in the Tulare Basin in mid-Pliocene
- Quaternary time.
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Plots of surface topography at three time inter-
vals, showing an inital phase of subsidence,
followed by uplift. In this model, topography
signals are symmetric about the center of a
dripping mass. The model assumes the mantle
lithosphere instability does not migrate with
respect to the overlying plate.
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