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[1] Field measurements show that estimated sediment deposition rate decreases as a
power law function of the measurement interval. This apparent decrease in sediment
deposition has been attributed to completeness of the sedimentary record; the effect
arises because of incorporation of longer hiatuses in deposition as averaging time is
increased. We demonstrate that a heavy-tailed distribution of periods of nondeposition
(hiatuses) produces this phenomenon and that observed accumulation rate decreases as
tg�1, over multiple orders of magnitude, where 0 < g � 1 is the parameter describing
the tail of the distribution of quiescent period length. By using continuous time random
walks and limit theory, we can estimate the actual average deposition rate from
observations of the surface location over time. If geologic and geometric constraints place
an upper limit on the length of hiatuses, then average accumulation rates approach a
constant value at very long times. Our model suggests an alternative explanation for the
apparent increase in global sediment accumulation rates over the last 5 million years.
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1. Introduction

[2] Estimating erosion and deposition rates through geo-
logic time is a foundation of geomorphology and sedimen-
tology. Measured rates provide information about the nature
and pace of landscape evolution. Modern sediment dating
techniques, coupled with biological and chemical proxies
for air temperature, precipitation and altitude, promise
continued progress in unraveling the coupling of erosion/
deposition, tectonics, and climate change. Because sediment
transport processes on the Earth’s surface respond to glacial
cycles and tectonic motions, changes in denudation and
accumulation rates through geologic time are expected.
Resolving these changes and attributing them to specific
forcing mechanisms is a key challenge. For example, much
recent research has documented a global increase in sedi-
ment accumulation rates since the late Cenozoic (�5 Ma to
present; Figures 1 and 2 [Zhang et al., 2001; Molnar, 2004;
Kuhlemann et al., 2001]). Those studies present compelling
evidence that enhanced climate variability beginning in the
late Cenozoic has continually destabilized landscapes and
led to enhanced erosion in upland environments.
[3] It is well known that measured deposition rates

decrease systemically with measurement duration (Figure 3)
for virtually all depositional environments in which there
are sufficient data, with intervals ranging from minutes to
millions of years [Sadler, 1981, 1999]. Here we refer to this

pattern as the ‘‘Sadler effect.’’ Sadler [1981] recognized that
this decrease likely results from the intermittent nature of
sediment deposition. To better understand this, consider
modern sediment accumulation around the globe. If we
measure sedimentation everywhere it is occurring, we may
estimate a large value for the average global accumulation
rate. If we instead consider all basins, including ones
experiencing nondeposition or erosion, we would estimate
a much smaller value. We can infer that in the temporal
evolution of one particular basin, there will be hiatuses in
deposition interleaved with intervals of accumulation.
Localized, instantaneous rates of deposition (or erosion)
are controlled only by the dynamics of sediment transport.
Over long timescales, however, deposition rates are limited
by the generation of accommodation space, typically the
slow process of tectonic subsidence. As an example, con-
sider deposition at a point on a river delta undergoing
constant subsidence. Migrating dunes have deposition local-
ized on steep downstream faces, while the longer upstream
faces reerode most deposited sediment. In addition, signif-
icant sediment transport only occurs during large annual
floods, so during most of the year little river sediment
deposits at any point on the delta. Following centuries to
millennia of channel deposition, a river will avulse to a new
location and abandon the old channel. The abandoned
section of the delta will flood for millennia because of
continued subsidence, until the river eventually returns to
begin deposition anew. The result is that hiatuses would
dominate the depositional history at any place on the delta,
and would have a wide distribution in time, even under
steady climate and tectonic conditions. Geologic evidence
strongly supports the notion that hiatuses are common while
deposition is rare, such that stratigraphy records only a very
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small fraction of Earth surface evolution [Sadler, 1981;
Tipper, 1983]. Sadler [1981] hypothesized that the apparent
decrease in accumulation rate with increasing measurement
interval arises because of incorporation of longer hiatuses in
deposition as averaging time is increased.
[4] Observations in natural rivers show that sediment

rarely is conveyed steadily downstream, but instead pulses
in an unpredictable fashion [Leopold et al., 1964; Gomez et
al., 2002]. Careful laboratory experiments with constant
boundary conditions have produced large-scale fluctuations
in bed load transport rates [Singh et al., 2009] and for
shoreline migration in a fan delta [Kim and Jerolmack,

2008]. Mechanisms responsible for these fluctuations in
fluvial systems include (in increasing length and timescale):
the direct influence of turbulence on grain entrainment
[Schmeeckle and Nelson, 2003; Sumer et al., 2003] and
grain-grain interactions in a river bed [Drake et al., 1988];
migration of bed forms [e.g., Jerolmack and Mohrig,

Figure 1. Global values for seafloor sediment accumula-
tion [after Hay et al., 1988; Molnar, 2004]. Note that data
are separated into bins with an interval of 5 million years. In
this context, accumulation during the last 5 million years
appears to abruptly increase.

Figure 2. Volumetric erosion rates for the last 10 Myr from the Eastern Alps (data from Kuhlemann et
al. [2001]). Rates were estimated from measurements of sediment accumulation in basins around the Alps
and were corrected for compaction. The curve may be thought of equivalently as sediment accumulation
rate. Inset shows data plotted on a log-log scale.

Figure 3. Representative ‘‘Sadler plot’’ showing sediment
accumulation rates as a function of measurement interval for
siliciclastic shelf deposits. Data are log-bin averaged and
represent thousands of measurements for each different
environment. At long timescales, some data appear to
gradually converge toward a constant rate.
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2005a]; river avulsion and channel migration [Jerolmack
and Paola, 2007]; and large-scale slope fluctuations in a
river delta [Kim and Jerolmack, 2008]. Nonlinear thresholds
exist in many other types of transport systems as well.
Regardless of their origin, the net effect of such nonlinear-
ities is that sediment transport is intermittent and rates
typically vary widely in space and time even under steady
forcing. Several studies indicate that a large portion of
stratigraphy may be the record of the stochastic variability
of sediment transport itself, rather than changes in forcing
[Sadler and Strauss, 1990; Paola and Borgman, 1991;
Pelletier and Turcotte, 1997; Jerolmack and Mohrig,
2005b; Jerolmack and Sadler, 2007; Kim and Jerolmack,
2008].
[5] Unequivocal demonstration of real changes in accu-

mulation rate through geologic time, such as the postulated
late Cenozoic increase of Molnar [2004], requires that these
rates are measured over a constant interval of time t
[Gardner et al., 1987]. This is rarely possible with real
data, however, where modern rates are measured over short
time intervals while historical and geological rates are
measured over longer and longer intervals [Sadler, 1981,
1999]. For example, Hay et al. [1988] presented data on
mass accumulation of sediment in the world’s oceans
through time (Figure 1). For their method the ‘‘area of
seafloor in existence at 5-Myr intervals from 0 to 180 M’’
was determined, and each area ‘‘was multiplied by the
average solid phase sediment accumulation rate for the
interval’’ [Hay et al., 1988, p. 14,934]. Estimates for
accumulation rates, however, were not from equal time
intervals; they came from thousands of nonuniformly
spaced dated horizons in dozens of Deep Sea Drilling
Project cores. In effect, rates were determined in the same
manner (and using some of the same data) as Sadler [1981,
1999], but then transformed into uniform intervals for
convenience. The data from Kuhlemann et al. [2001] share
similar issues (Figure 2). Sadler [1981] demonstrated that
age and time interval cannot be separated from each other in
estimates of sediment accumulation; indeed, his data show
an almost one-to-one correlation between sample age and
measurement interval. The result is that the measurement
interval systematically increases with the age of the deposit,
and thus real changes in sediment accumulation rates
(‘‘process rates’’ in the work by Gardner et al. [1987])
are difficult to separate from apparent changes because of
the Sadler effect. Determining the nature of stochastic
transport fluctuations, therefore, is of paramount impor-
tance, and determining their effect on the geologic record
requires modeling.

2. Previous Stochastic Models for Sediment
Deposition

[6] The story of depositional history can be told by
following the elevation of the sediment surface with time
S(t). In this study, we refer to true sediment deposition rate
as the velocity V of the sediment surface during deposition.
The effective average deposition rate, however, estimated
by taking the ratio of accumulation thickness to endpoint

dates Vobs =
S t2ð Þ�S t1ð Þ

t2�t1
, reflects the true deposition rate as well

as depositional hiatuses (periods of zero velocity) and
erosion (negative surface velocity), with a possible correc-

tion for compaction. Modeling the generation of stratigra-
phy as a stochastic process has a long history beginning
with Kolmogorov [1951]. The idea is that location of the
sediment surface is the sum of past depositional and
erosional periods, represented by positive or negative
‘‘jumps’’ creating a stratigraphic column. Given indepen-
dent and identically distributed (IID) particle jump vectors
Yn, location of the sediment surface at time t is

S tð Þ ¼
Xt=Dt

i¼1

Yi; ð1Þ

where Dt is the time between jumps. As equation (1)
implies, the focus of these stochastic models has been on the
nature of depositional and erosional periods that affect the
location of the sediment surface S(t) in space. These have
included exponentially distributed bed thickness [e.g.,
Dacey, 1979] and skewed distributions that produce biased
random walks and lead to a negative dependence of Vobs on t
[Tipper, 1983].
[7] Others have used the continuous scaling limit of the

classical random walk to represent sediment deposition. For
example, a one-dimensional Brownian motion was used to
represent a rising (deposition) or declining (erosion) sedi-
mentary surface, while a deterministic drift term represented
the generation of accommodation space (e.g., steady tec-
tonic subsidence [Strauss and Sadler, 1989]). This model
reproduced the general form of empirical scaling curves
with two asymptotes: over shorter time intervals, accumu-
lation was determined principally by noise, while long
timescales were dominated by the drift term. The short time
scaling behavior of accumulation rate for this model follows
the form Vobs / t�1/2, while at long time intervals accumu-
lation rate is constant and equal to drift, thus Vobs / t0. The
diffusion equation has been used to model sediment depo-
sition with distance from a source [Paola et al., 1992]. An
additional noise term can account for the random location of
the source and other known physical processes [Pelletier
and Turcotte, 1997]. This model led to Vobs / t�3/4, in good
agreement with empirical data for fluvial systems. The
source of this scaling was correlation in depositional incre-
ments. Others have added correlation to the spatial incre-
ments by using fractional Brownian motion models [Sadler,
1999; Molchan and Turcotte, 2002; Huybers and Wunsch,
2004].
[8] Exceptions to the focus on the spatial process began

with Plotnick [1986], who showed that a power law
relationship between accumulation rate and time interval
implies a power law distribution of hiatus periods in
deposition. This was demonstrated by creating a synthetic
stratigraphic column and removing portions according to
the recipe for generating a Cantor set. This model resulted in
a unique scaling rate: Vobs / t�1/2 for the accumulation rate
according to the exact scaling of a Cantor set. Other models
have been used to generate synthetic sequences with power
law hiatus periods. One example is a bounded random walk
model (erosion or deposition occurring randomly with net
accumulation always positive) also resulting in Vobs / t�1/2

[Pelletier, 2007]. These studies demonstrate the link
between heavy tailed quiescent periods and scaling in
observed accumulation rate, but their focus is models for
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generating synthetic stratigraphic sequences with power law
hiatus distribution. Further, these studies produce specific
scaling rates rather than allowing for the range of accumu-
lation scaling observed in the field [Jerolmack and Sadler,
2007].
[9] In this work we provide analytical theory underlying

the results found by Plotnick [1986] and Pelletier [2007].
We provide a random model that accommodates power law
hiatus periods with arbitrary scaling and use previous results
in stochastic limit theory to find the exact relationship
between hiatus distribution and accumulation rate. Although
we do not treat physical processes of sediment deposition
and erosion explicitly, the stochastic model can shed light
on the nature of these processes and also on the geologic
record itself.

3. Conceptual Model

[10] Like many before us [e.g., Sadler, 1981; Tipper,
1983; Plotnick, 1986; Pelletier, 2007], we hypothesize that
the great length of nondepositional periods relative to
depositional periods results in sequence thickness for a
given time interval with a wide distribution. This leads to
large variation between true deposition rate V during depo-
sition and observed deposition rate Vobs which incorporates

periods of nondeposition. It is not possible to predict the
length of hiatus or depositional periods and so we can treat
accumulation thickness, and thus observed velocity, as
random variables.
[11] In probability theory, the law of large numbers

(LLN) describes the long-term stability of the mean of a
sequence of random variables. The running sample mean
for a sequence of random variables drawn from a distribu-
tion with finite expected mean converges to the true mean of
the distribution (Figure 4a) [Ross, 1994]. We suggest,
however, that average measured deposition rate does not
have a finite expected value because even if an extremely
long hiatus occurs, there is still a small but finite probability
of an even longer hiatus. The practical implication of a
random variable having infinite mean probability density is
that the sample mean of a sequence of random variables will
never converge to a constant value as the number of samples
becomes large (Figure 4b). This is because extremely large
values occur often enough to radically change the running
sample mean. Infinite-mean probability densities are char-
acterized by a cumulative distribution function (CDF) with
tail that decays as power law t�g, 0 < g � 1. The probability
density function (derivative of the CDF) has a tail that
decays as�t�g�1. Then the expected first moment, or mean,
of the density diverges E(t) �

R1
�1 tp(t)dt = 1, where

Figure 4. Running average for series of (a) exponential random variables and (b) Pareto random
variables. The law of large numbers shows that the sample mean of a large number of random variables
with finite-mean probability density will converge to that mean (Figure 4a). This convergence does not
occur if a distribution has infinite mean (Figure 4b).
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p() represents probability [Feller, 1968]. In other words,
sample mean of an infinite mean distribution will never
converge to a constant value (Figure 4b) because the mean
of the parent distribution does not exist.
[12] When the tails of the hiatus duration distribution

have infinite mean, an average length hiatus does not emerge.
We will show that as the sampling interval increases, so
does the probability of encountering an extremely long
hiatus, and in turn, the observed deposition rate Vobs
decreases as a power law.
[13] In most natural sedimentary systems where sufficient

data exist, the observed deposition rate appears to approach
a constant value at very long time intervals; that is, there is a
transition to g = 1, and the thickness of sedimentary
deposits increases almost linearly with time [Jerolmack
and Sadler, 2007, Figure 3]. In the infinite-mean waiting
time model there is always a finite possibility of a longer
hiatus period. In nature, however, there are typically limits
to the waiting times and magnitudes of deposition events.
Subsidence, the main mechanism for generating accommo-
dation space on geologic timescales, depends on such
processes as thermal cooling, sedimentary loading, and
deformation, all of which are likely to change through time.
Sedimentary basins have a finite lifetime over which sub-
sidence can persist before they are uplifted or subducted by
tectonic processes. Finally, there is some limit to the range
of climate fluctuations that have occurred in Earth’s history,
and a maximum timescale associated with that limit. If
climate variability drives part of the stochastic variation in
deposition rates, this places a limit on the distribution of
waiting times between depositional periods. In short, the
range of variability in sedimentation rates and timescales

determines the range over which the Sadler effect is
observed.

4. Theory

[14] The model we use to predict location of the sediment
surface with time S(t) is an uncoupled continuous time
random walk (CTRW) (see Metzler and Klafter [2000] for a
comprehensive review), also known as a renewal reward
process. A CTRW is a discrete stochastic process (despite
its name) that equates location at time t with the sum of
discrete jumps (deposition periods) that require a random
time to complete because of ‘‘waiting times ’’ (hiatuses)
between jumps. In uncoupled, as opposed to coupled,
CTRW, jumps are not correlated with waiting times.
[15] Conceptually, an infinite average duration between

periods of deposition can be interpreted as a succession of
long pauses followed by bursts of events [Balescu, 1995;
Montroll and Schlesinger, 1984]. We use a CTRW where
constant depositional periods are effectively instantaneous.
From a modeling perspective, this simplifies computations
and also results in the same long-time result as a model with
finite depositional period duration [Zhang et al., 2008]. We
judge that limiting, or asymptotic, models are appropriate
for representing random processes recorded over geologic
time.
[16] Given constant jump vectors Yn with density f (x), the

location of the sediment surface at time t is (Figure 5)

SNt
¼

XNt

i¼1

Yi; ð2Þ

where the number of jumps by time t, Nt, is a function of the
random IID waiting times between the initiation of jumps Ji:
the time of the nth jump is T(n) = J1 + .. + Jn and N(t) = max
{n:T(n) � t}. The density of waiting times Ji is denoted y(t).
In a detailed model for sediment deposition, deposition rate
and durations of depositional periods can be a random
variable by assigning a ‘‘jump length density’’. The purpose
of our study, however, is to demonstrate the effect of various
waiting time distributions, and so we set sediment surface
jump lengths Yn = constant.
[17] The solution to a CTRW is typically given by its

Fourier-Laplace transform (x ! k, t ! s) [Montroll and
Weiss, 1965; Scher and Lax, 1973]. The probability of
surface location

S k; sð Þ ¼ 1� y sð Þ
s

S k; t ¼ 0ð Þ
1� f kð Þy sð Þ ð3Þ

is a function of the start location of the surface S(x, t = 0),
the jump length density, and the waiting time density. To
compare the effects of finite-mean and infinite-mean hiatus
length densities we will apply each, in turn, in the CTRW
master equation, take the scaling limit to obtain the long-
term governing equation, and evaluate the deposition rate
characteristics predicted by each. Results in the section
describing finite-mean hiatus density are well known. We
derive them in detail so that the method used to generalize
to the infinite-mean case is clear.

Figure 5. In a CTRW representing the location of the
sediment surface with time, permanent accumulation
periods are represented by random jumps (Yi) and hiatuses
between permanent accumulation periods are represented by
waiting times (Ji). The number of events by time t, Tn, is
related to the time of the nth event, Nt (data after Sadler
[1999] and Benson et al. [2007]).
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4.1. Finite-Mean Hiatus Duration

[18] Using the infinite series representation of the expo-
nential function, the Laplace transform of the waiting time
density y(t) can be expressed as

y sð Þ ¼
Z

e�sty tð Þdt

¼
Z

1� st � ::ð Þy tð Þdt

¼
Z

y tð Þdt � s

Z
ty tð Þdt � ::

¼ 1� sm� :: as s ! 0: ð4Þ

Since we assume a constant deposition rate, the jump length
density will be a dirac delta function at V: p(x) = d(x + C)Dt.
Since this function is a probability density with mean C
and variance zero, using arguments similar to those in
equation (4), its Fourier transform is f(k) = 1 � ikC. Let
Dt be a characteristic jump time, and rescale the moments
of the densities by letting b = m

Dt
and V = C

Dt
. Then

f kð Þy sð Þ ¼ 1� bDtsþ ODtð Þ 1� ikVDtð Þ
¼ 1� ikVDt � bDtsþ ikVsb Dtð Þ2 þ O Dtð Þ; ð5Þ

where O(�) represent higher-order terms. Use (4) and (5) in
the master equation (3), simplify, and take the limit asDt! 0
to find

S k; sð Þ ¼ s

s

bS k; 0ð Þ
bsþ Vik

: ð6Þ

[19] Rearrange and take inverse transforms to find that
the partial differential equation (PDE) that governs this
CTRW with finite-mean waiting time distribution in the
scaling limit is an advection equation with retardation
coefficient b related to the mean of the waiting time
distribution:

b
@S

@t
¼ �V

@S

@x
ð7Þ

or

@S

@t
¼ �Veff

@S

@x
: ð8Þ

[20] For clarity, V is the actual deposition rate during
deposition. The average deposition rate over many deposi-
tion/nondepositional periods Veff = V/b incorporates the
periods of zero deposition into the estimate of deposition
rate. The measured or observed deposition rate Vobs is often
not equal to, but related to V or Veff. Our goal is to clarify
this relationship. Equation (8) has the well known Green’s
function solution S(x, t) = d(Veff t), a constant shift with time
according to the retarded velocity. In other words, after a
sufficient time has passed, the location of the sediment
surface S grows linearly with time as E(t) = Vt

b . The expected

deposition rate after long time is simply Vobs =
E tð Þ
t

= V
b, a

constant. For finite-mean hiatus density, the deposition rate
is expected to converge to a constant rate.

4.2. Heavy-Tailed, Infinite-Mean Hiatus Duration

[21] For a CTRW with effectively instantaneous jumps of
constant length and infinite-mean waiting time density with
tail parameter g, we have [Klafter and Silbey, 1980]

y sð Þ ¼ 1� Bgsg þ :: ð9Þ

Rescale the moments of the waiting time density by b = Bg

Dt
and find

f kð Þy sð Þ ¼ 1� bDtsg þ ODtð Þ 1� ikVDtð Þ
¼ 1� ikVDt � bDtsg þ ikVsgb Dtð Þ2 þ O Dtð Þ: ð10Þ

[22] Use (9) and (10) in the CTRW master equation (3),
simplify and take the limit as Dt ! 0 to find

S k; sð Þ ¼ sg�1bS k; 0ð Þ
bsg þ Vik

: ð11Þ

[23] After rearranging and taking inverse transforms, we
find that in the scaling limit, the PDE governing a CTRW
with constant jump length and infinite mean waiting time
distribution is a fractional-in-time advection equation:

b
@gS

@tg
¼ �V

@S

@x
ð12Þ

or

@gS

@tg
¼ �Veff

@S

@x
; ð13Þ

where 0 < g � 1 is the order of the fractional time
derivative. Background on some useful fractional PDES is
provided by Schumer et al. [2009] and many others [e.g.,
Benson et al., 2000; Schumer et al., 2001, 2003;
Meerschaert et al., 2002]. Methods to solve fractional-in-
time equations of this type can be found in the work by
Baeumer and Meerschaert [2001]. For the purposes of this
study it is sufficient to understand that the noninteger order
derivative in equation (12) arises as a result of an infinite
mean waiting time density and, as we will show, that the
mean of the solution scales as tg. This generalizes the
integer order case, where g = 1 and the expected location of
the surface scales as t1.
[24] To determine the expected location of the surface

with time following the fractional advection equation, take
Fourier and Laplace transforms, assuming a pulse initial
condition and solve for S(k,s):

S k; sð Þ ¼ sg�1

sg þ V
b ik

: ð14Þ

Since the solution S(x, t) of (12) is a probability density, its
first moment or expected location with time, can be
calculated using [e.g., Ross, 1994]

E Sð Þ ¼ 1

�i

@S k; sð Þ
@k

jk¼0: ð15Þ
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Substituting (14) in (15) and taking the inverse Laplace
transform, we find

E Sð Þ ¼ V

b
tg

G 1þ gð Þ ; ð16Þ

where G(�) is the Gamma function. The measured velocity

Vobs(t) =
E Sð Þ
t

will be

Vobs tð Þ ¼
V

b
tg�1

G 1þ gð Þ ; ð17Þ

where t represents the time interval through which
deposition rate is measured. This equation describing
measured deposition rates (equation (17)) demonstrates that
measured sediment deposition with heavy-tailed quiescent
periods has power law decay with log-log slope g � 1. In
other words, our analysis shows formally how a power law
distribution of hiatuses can produce the Sadler effect. If
there is no mean quiescent period, there is no mean effective
velocity, and we never converge to any effective velocity as
we sample larger and larger sedimentary sequences that
include extreme quiescent periods.

4.3. Truncated Infinite-Mean Hiatus Duration

[25] There have been a variety of applications for which a
model with infinitely large waiting times is unacceptable,
leading to the replacement of an infinite-mean waiting time

density with a truncated or tempered version [Hui-fang,
1988; Dentz et al., 2004; Meerschaert et al., 2008]. Tem-
pered densities have power law character for small time and
exponential character above some cutoff. These densities
have finite moments so that the solutions of governing
equations for CTRW that use them have a converging mean.
CTRW with tempered waiting time density are appropriate
for cases in which the observed accumulation rate decreases
as a power law and then converges to an approximately
constant rate. Tempered advection-dispersion equations
governing these CTRW are described by Meerschaert et
al. [2008]. The nature of the intermediate character and late
time convergence of accumulation rate graphs will be
examined in future work. For this study, the power law
portion of the accumulation rate graph will be used to
estimate true deposition rate.

5. Simulation

[26] To demonstrate the effect of power law versus thin-
tailed hiatus length distribution resulting in time-dependent
observed deposition rate, we simulated a variety of discrete
CTRWs. For each, we alternately sampled a hiatus period
length from the appropriate probability density and then
added a constant deposition thickness to the simulated
stratigraphic column (Figure 6a). Deposition rate for each
simulation was calculated after each deposition period using
Vobsi =

S tið Þ�S t0ð Þ
ti�t0

(Figure 6b).

Figure 6. Comparison of simulations of constant rate (104 mm/year) sediment deposition periods that
last 1 year where random quiescent periods are drawn either from an exponential distribution (gray) with
average length 1

l =
1
5
years or from a Pareto distribution (black) with tail parameter g = 0.5. (a) Graph of

simulated sediment surface location with time, (b) Sadler-type graph of estimated deposition rate versus
thickness of unit measured, and (c) theoretical estimate of the actual velocity based on each observation
in Figure 6b.

F00A06 SCHUMER AND JEROLMACK: REAL AND APPARENT DEPOSITION RATES

7 of 12

F00A06



5.1. Finite-Mean Hiatus Duration

[27] Finite-mean waiting time CTRWs were simulated
using exponential hiatus lengths y(t) = le�lt, with rate
l = 5. Constant depositional periods were 1 year long with
velocity 104 mm/year. The mean of an exponential distri-
bution is m = 1

l so the effective deposition rate is the actual
deposition rate divided (retarded) by the length of the
average quiescent time (if the surface only increases 1 year
in each deposition period): Veff = Vl. As predicted, the
elevation of the simulated sediment surface increased line-
arly with time as S(t) = Vlt = 104 = 1

5
t (Figure 6a). Since

average hiatus length exists in this case, estimates of
effective deposition rate quickly converge to Veff, the
average deposition rate divided by the average hiatus length
(Figure 6b). This phenomena is the same as that described
in Figure 4a. Knowledge of the average duration of hiatuses
between depositional periods is required to estimate actual
deposition rate from the observed rate Veff (Figure 6c).

5.2. Infinite-Mean Hiatus Duration

[28] We simulated infinite-mean waiting time CTRW
using Pareto distributed hiatus lengths y(t) = g t�g�1 with
tail parameter g = 0.5 and tracked sediment surface location
through time. As in the previous case, we used constant
depositional periods 1 year long with velocity 104 mm/year.
For the case of Pareto waiting times, the retardation coef-
ficient is b = G(1 � g) (Appendix A), yielding an expected
sediment surface elevation with time

E Sð Þ ¼ V

G 1� gð Þ
tg

G 1þ gð Þ : ð18Þ

Using Vobs =
E Sð Þ
t
, we find

Vobs tð Þ ¼
V

G 1� gð Þ
tg�1

G 1þ gð Þ : ð19Þ

We see rapid convergence of the sediment surface location
and observed deposition rates to these equations in Figures 6a
and 6b.
[29] True average deposition rate can be estimated from

observations by following the line in the graph (Figure 6b)

toward zero or rearranging equation (18): V =
VobsG 1�gð ÞG 1þgð Þ

tg�1 .
The value for the waiting time tail distribution g can be
obtained by measuring the slope of observed velocity versus
time graph (Figure 6b). Because of the random nature of the
data, the value will not be exact. In this simulation, the true
deposition rate estimated from the observed deposition rates
with time fluctuated over 1 order of magnitude approxi-
mately centered at the true deposition rate.

5.3. Heavy-Tailed Hiatus Duration With Finite
Maximum

[30] We generated discrete CTRW with exponentially
tempered Pareto waiting time distribution (g = 0.4, l =
10,000), constant depositional periods 1 year long, and
velocity 104 mm/year. We generated tempered Pareto ran-
dom variables using the method described by B. Baeumer
and M. Meerschaert (Tempered stable Lévy motion and
transient super-diffusion, submitted manuscript, 2009). At
early time, the simulated surface appears to follow the

infinite mean model, with log-log slope g (Figure 7a). After
a cutoff time, the slope becomes linear. This change in slope
coincides with convergence of the observed accumulation
rate (Figure 7b).

6. Application

[31] A heavier tail in the hiatus density (smaller g) results
in larger probabilities of extremely long quiescent periods.
To evaluate different environments, we return to data
reported in Table 1 of Jerolmack and Sadler [2007] on
terrigenous shelf deposits; these include continental rise and
slope, continental shelf, shore, delta, floodplain, and alluvial
channel deposits. For time intervals smaller than 102 yr, all
environments for which sufficient data exist show g < 0.50,
indicating significant probabilities of long hiatuses. The
smallest value was for alluvial channel deposits (g =
0.17). Such deposits are constructed mostly by the process
of channel avulsion, an abrupt change in channel path
induced by deposition. Recent modeling work has sug-
gested that avulsion is a nonlinear threshold process, which
produces heavy-tailed dynamics in both channel migration
and sediment deposition [Jerolmack and Paola, 2007],
consistent with a heavy tail in hiatus density. The environ-
ment with the largest value (g = 0.48) of those listed is river
floodplains. Floodplain sedimentation is most rapid in the
vicinity of channels, but deposition on floodplains persists
even at significant distances from active rivers. Data suggest
that floodplains have a lower probability of long hiatuses in
deposition than do channel deposits.
[32] We now turn our attention to implications of this

work for interpreting real changes in mean accumulation
rates through geologic time. Measured sedimentation rates
in basins (and, by inference, erosion of uplands) around the
world show a 2–10 fold increase in the last 5 Myr when
compared to previous time intervals [Hay et al., 1988;
Zhang et al., 2001] (Figures 1 and 2). We return to Figure 1,
which shows global accumulation of terrigenous sediment
in ocean basins, grouped into bins of 5-million-year inter-
vals. It is clear that the mass of sediment accumulated in the
last 5 million years is substantially larger than any previous
interval. The higher-resolution data from the Eastern Alps
[Kuhlemann et al., 2001] (Figure 2) show a similar trend in
that erosion rates (or equivalently accumulation rates)
appear to diminish with time into the past.
[33] Various explanations for the increase of erosion rates

since the late Cenozoic have been proposed [Zhang et al.,
2001; Molnar, 2004]: the lowering of sea level and subse-
quent erosion of continental margins; increased glacial
erosion and sediment production from a cooler climate;
and rapid tectonic uplift. The synchroneity of accelerated
accumulation in basins of different geologic context, how-
ever, led Molnar and colleagues to dismiss these explan-
ations. They proposed that enhanced climate variability
beginning in the late Cenozoic has continually destabilized
landscapes and led to enhanced erosion in upland environ-
ments. They present compelling evidence of both climatic
variation, and a general cooling trend, during the last
5 million years: oxygen isotope records, fossil assemblages,
paleosols, and sediment grain size data. Our analysis,
however, leads us to question whether the apparent change
in accumulation rates can be attributed completely to real
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changes in landscape denudation. As discussed previously,
we cannot separate sediment age from the interval associ-
ated with that measurement. As one test, we present a null
hypothesis model for comparison with the sedimentary data
just discussed. Figure 8 shows a Sadler-type plot of accu-
mulation rate against time interval for data taken from
carbonate platforms. We choose carbonate data because
(1) growth rates of carbonate platforms should not be
directly related to continental denudation rates and (2) if it
is true that climate has generally cooled in the last 5 million
years, then real rates of carbonate accumulation should be
slower in recent times than in the past (carbonate deposition
rate increases with water temperature) and thus rates of
carbonate accumulation might be expected to increase with
measurement interval (e.g., present to 2 million years ago
versus present to 5 million years ago). Just as in every other
environment, however, carbonate accumulation rates de-
crease as a power law function of measurement interval.
The data decay at a rate of t�0.39, suggesting a hiatus density
tail parameter g = 0.61 and a true average deposition rate of
50–70 mm/yr.
[34] For a more direct comparison to rate data from the

Eastern Alps, we plot carbonate data through a similar time
interval in Figure 8 (bottom). The data are very well fit by a
power law, and in fact the scaling exponent (t�0.23) is very
close to that observed for accumulation rates in the Eastern
Alps (t�0.28). In other words, the change in the apparent rate
of carbonate accumulation with measurement interval

(Figure 8, bottom) is very similar to the purported real change
in mountain denudation rates with age (Figure 2). Observed
Eastern Alps denudation rate decreases as a power law
function of age like Vobs � t�0.28, meaning g = 0.72. While
observed rates range between �2000 and 20,000 km3/Myr,
we estimate (using equation (18)) that the true average
denudation rate is approximately 40,000 km3/Myr. This
estimate assumes that hiatus periods far outweigh erosional
periods in creating the sedimentary record. Although one
cannot prove that the Sadler effect accounts for all of the
measured change in accumulation rates of the late Cenozoic,
it is equally problematic to assert that measurements reflect
real changes in the pace of geologic processes.

7. Discussion

[35] We have described the character of sediment accu-
mulation resulting from a heavy-tailed distribution of wait-
ing times between events. Estimates of deposition rate for
specific studies may require inclusion of the stochastic
nature of deposition and erosion. Here, we discuss the
means by which they can be incorporated into a CTRW
model and the impact it will have on model prediction.
[36] 1. Random, thin-tailed depositional period length or

rate will not affect the average deposition rate over geologic
timescales. CTRW jumps Yi can be random variables from a
parent distribution with both positive (deposition) or nega-
tive (erosion) values. In the scaling limit, a CTRW with

Figure 7. (a) The simulated surface for a CTRW with tempered Pareto (g = 0.4, l = 1/10,000) waiting
time distribution begins close to that of the nontruncated Pareto model with equal tail parameter but then
converges to the slope of a finite-mean model. (b) Observed deposition rate for this simulation decays as
the infinite mean model predicts and then converges to a constant value.
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random thin-tailed depositional periods will converge to the
same limit process as the CTRW with constant depositional
rate with an extra term representing deviation around the
mean [Meerschaert and Scheffler, 2004]. The governing
equation in this case is a fractional-in-time advection-
dispersion equation

@gS

@tg
¼ �V

@S

@x
þ D

@2S

@x2
; ð20Þ

where D is the dispersion coefficient describing spread
around the average accumulation rate V. The average
sedimentation rate is affected by the order of the temporal
derivative (g) and the order of the derivative in the sediment
velocity term (unity): average location of the sediment
surface grows as (Vt)g/1 [Zhang et al., 2008].
[37] 2. Random, heavy-tailed depositional period length

or rate can lead to an increase in measured deposition rates

with measurement interval. Here, longer measurement in-
terval leads to increased probability of encountering a
depositional period that left an extremely thick sedimentary
sequence. Heavy-tailed (infinite-variance) rates of deposi-
tion in a CTRW lead, in the scaling limit, to a governing
equation with a fractional derivative in the dispersive

term: @gS
@tg = �V @S

@x + D@aS
@xa , 1 < a � 2 affecting only the

scaling of dispersion in the location of the sediment surface
[Benson et al., 2000]. In other words, the scaling of the
average velocity will not be affected by deposition rates
with heavy-tailed, infinite variance distributions. If deposi-
tion rates could be so extreme that their mean value did not
converge, then longer measurement interval would be more
likely to intersect extremely high deposition rates, and
observed accumulation rate would increase with measure-
ment interval. This phenomenon has been observed in
mountain erosion rates [Kirchner et al., 2001].

8. Conclusions

[38] We have demonstrated that a heavy-tailed distribu-
tion of hiatus periods will result in a power law decrease in
observed deposition rate as the measurement interval
increases, according to tg�1, where g is the tail parameter
of the hiatus density. A more detailed picture of sediment
deposition can easily be incorporated into this model.
[39] The best model fit to empirical scaling curves is the

truncated Pareto distribution for hiatus periods. This model
implies that there is a power law distribution of waiting
times between deposition events, but there is an upper limit
to this distribution. Geologic and geometric constraints
determine this upper limit, beyond which accumulation
rates are (nearly) independent of time.
[40] There is ample evidence that sediment transport is a

stochastic process even under steady forcing, and that this
variability leaves its imprint on the stratigraphic record. We
have modeled sediment deposition as an intermittent,
heavy-tailed process without describing the source of that
intermittency. It seems likely that a large part of the
intermittency results from nonlinear dynamics of sediment
transport itself, with variability in forcing an additional
component. While our stochastic model does not incorpo-
rate physical processes, hiatus density distributions inferred
from empirical data can provide information of the statisti-
cal nature of sediment deposition on geologic timescales.
This information would allow comparison of depositional
dynamics among different environments, and provide con-
straints for future process-based models. Further, by fitting
the model to empirical scaling curves we can estimate a
representative, real value for ‘‘average’’ accumulation rates.
[41] Our analysis highlights the difficulty in attributing

observed changes in accumulation rates through time to real
changes in the rates of erosion and deposition. In particular,
we have questioned how much of the observed increase in
accumulation rates since the late Cenozoic has to do with
accelerated continental denudation due to climate change.
There is overwhelming empirical evidence for variability in
deposition rate, and it is a mathematical inevitability that
such stochastic fluctuations produce a time dependence in
accumulation rate measurements. It therefore seems likely
that the primary signal in stratigraphy is the record of the

Figure 8. Rates of carbonate platform accumulation
plotted against measurement interval, from Sadler [1999].
Data are log-bin averaged on the basis of more than 15,000
rate measurements from peritidal settings all over the world.
(top) The entire range of data shows carbonate accumula-
tion rates decrease with time as t�0.39. (bottom) A subset of
the data showing measurements made over intervals
comparable to that of the Eastern Alps data shown in
Figure 2. Over this range, accumulation rates decrease as
t�0.23, comparable to the Eastern Alps data. Inset shows data
on a log-log scale.
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nonlinear dynamics of sediment transport, played out
through geologic time.

Appendix A: Approximation of the Retardation
Coefficient for a Fractional-in-Time Transport
Equation With Pareto Waiting Times

[42] The fractional in time equation b@gC
@tg = L(x)C, where

L(x) is a linear operator, governs the scaling limit of a CTRW
with waiting time density y(s) = 1 � b sg + .., 0 < g < 1 as
s ! 0. Here we solve for b given Pareto waiting time
density y(t) = g t�g�1.
[43] Use the Laplace transform pair [Balescu, 1995]:

y sð Þ ¼ 1� tgDs
g þ ::; 0 < g < 1 as s ! 0

y tð Þ ¼ 1

tD

g
G 1� gð Þ

t

tD

� ��1�g

þ:: as t ! 1;

where tD is a characteristic time for a CTRW.
[44] Ignore higher-order terms and rearrange to find

y tð Þ ¼ 1

tD

1

tD

� ��1�g
1

G 1� gð Þ gt
�1�g

¼ 1

tD

� ��g
1

G 1� gð Þ gt
�1�g : ðA1Þ

[45] Let b = tD
g and use tD = b1/g in y(t):

y tð Þ ¼ 1

b�g

� �1=g
1

G 1� gð Þ gt
�1�g

¼ b
1

G 1� gð Þ gt
�1�g : ðA2Þ

[46] For the case y(t) = g t�g�1, it must be true that b = G
(1 � g) with a characteristic time tD = [G(1 � g)]1/g.

Notation

a order of fractional space derivative
b ratio of true deposition rate and effective deposi-

tion rate
d(x) dirac delta function

g order of fractional time derivative
G() Gamma function
l exponential rate parameter

y(t) CTRW hiatus length density
y(s) Laplace transform of CTRW hiatus length density
D dispersion coefficient

f(x) CTRW jump length density
f(k) Fourier transform of CTRW jump length density
Ji CTRW random hiatus length

N(t) number of depositional periods by time t
S(t) location of sediment surface with time

t time
V true deposition rate (surface velocity) during

deposition
Veff average deposition rate includes the effect of both

deposition and hiatuses
Vobs measured deposition rate

x distance along the stratigraphic column
Yi CTRW random jump length
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