Notes from two lunchtime workshops with Caltech Classroom Connection - about how to present science to kids

Workshop #1 December 4, 2008

CCC team: James Maloney, Jen Franck, Tara Gomez

Participants: Nina Lin, Willy Amidon, Alan Chapman, Steve Kidder

Connect with the kids – you were a kid once!

• Introduce yourself, ask them their name

• Say what you do, ask them what grade they are in

What are your goals?

Show what scientists do

Show that science is accessible to everyone

• Inspire kids to learn more science

· Have fun!

Engage the kids

• Have hands on activities, such as

- o Drawing on balloons for stress and strain
- o Triangulation exercise for locating earthquakes
- Cutting clay pictures for faults
- o Sheets covered in dots for how big is a million
- Slinky for s and p waves
- o Different kinds of rocks metamorphic

Ask questions, such as

- What do you notice about ...
- Why is there a mountain?
- Why does this rock look like this?

Use analogies, such as

- Liquefaction is like your feet in the sand at the beach
- Locating the distance of and earthquake with S and P waves is like locating the distance of lightening using the time difference between seeing the lightening and hearing the thunder

Also, have free goodies

· Pens, stickers, hats, geology kits

And please include:

- Caltech's Tectonics Observatory
- TO website: http://tectonics.caltech.edu/outreach
- Thanks to Henry and Betty Moore Foundation

Afterwards, evaluate how it went:

• Look at their body language. Did they smile? Did they ask questions? Were they happy?

.....

Workshop #2 May 12, 2009

CCC team: James Maloney, Tara Gomez

Participants: Willy Amidon, Steve Kidder, Nina Lin, Anthony Sladen, Aron Meltzner

General strategies:

• Learn through experience.

- Define your learning objectives. Then pick activities that best help do this.
- Different types of learning: visual, kinesthetic ...
- Use probing questions
- Use scientific method ask what they expect to see, write answers on the board, do the experiment, compare with predictions
- Have something that they can take home rock collection, magnifiers
- Teach something cool about science, and how this is important to everyone, even those who will not be scientists.
- Can point out science is teamwork (some go in field, some do calculations, some do lab experiments), international.

Classroom visit:

• Give email to teacher for follow-up questions.

Eaton Canyon:

- Make sure there are at least 2 adults for each group
- Have patience!
- Give high energy students extra jobs
- Have eye contact with each kid so they feel connected as well as stay in line
- Don't always lead like a mother duck; be inside the group as well
- No ipods
- Could say, at the beginning, "What do you expect to see?" Write this down. Then at end of hike can review.
- Things to discuss:
 - o Faults, rock types, weathering, patterns, waterfall
- Have activities ready for during breaks.
- Some activities:
 - Work sheet with names of things to find, or with actual photos (can work in teams, and can get prize)
 - Count the number of times you see something, such as a certain type of rock.
 - o During lunch break, could sketch something

- o Use notebook for observations, reflections, diagrams, questions.
 - See: sciencenotebooks.org
- o Maybe have a few vocabulary words in mind. Then:
 - What do you see?
 - Geologists call this;
 - Write in notebook "A fault is"
- What are the important features? Draw them.
- One strategy: Talk about something. Then ask "What do you see over there?"

Science Fair:

• Nina's idea for outreach activities that have K-6th grade: make their own rock collection.

TO Tours:

- As you meet the students, welcome them to Caltech and to your lab.
 - o Introduce yourself. Let them know where you are from. Ask them if they know what a graduate student / postdoc is. Tell them where you went to undergrad school.
 - Let them know how you became interested in science; why you are working in science
 - Let them know what else you like to do besides science what are your hobbies?
- Discuss and show your cutting edge science
- Tell them one question you are trying to answer, such as
 - o An experiment you are trying to perform
 - o A scientific claim you are trying to make and HOW you know it is true
 - o A tool you use in your research (e.g., glove box, mass spec, computer...)
 - o The broader implications of your work
 - o Highlight that experiments fail
 - Mention where your funding comes from
- Check to see that students are engaged by asking them questions all along, such as
 - o Can anyone tell me about ...