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a b s t r a c t

The mechanics responsible for the initiation of the orthogonal pattern characterizing mid-ocean ridges
and transform faults are studied using numerical models. The driving forces are thermal stresses arising
from the cooling of young oceanic crust and extensional kinematic boundary conditions. Thermal stress
can exert ridge-parallel tension comparable in magnitude to spreading-induced tension when selectively
released by ridges and ridge-parallel structure. Two modes of ridge segment growth have been identified
in plan view: an overlapping mode where ridge segments overlap and bend toward each other and a
connecting mode where two ridge segments are connected by a transform-like fault. As the ratio of
thermal stress to spreading-induced stress (�) increases, the patterns of localized plastic strain change
from the overlapping to connecting mode. The orthogonal pattern marks the transition from one mode
to the other. Besides the amount of stress from each driving force, the rate of stress accumulation is
crucial in determining the emergent pattern. This rate-dependence is characterized by the spreading rate
normalized by a reference-cooling rate (Pe′). When Pe′ is paired with the ratio of thermal stress to the
reference spreading-induced stress (� ′), they unambiguously define stability fields of the two modes.
The obliquely connecting, the orthogonally connecting, and the overlapping mode are similar to ridge-
transform fault intersections observed in ultra-slow, slow to intermediate, and fast spreading centers,
respectively. The patterns are also sensitive to the strain weakening rate. Fracture zones were created in
part as a response to thermal stress.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Mid-ocean ridges and transform faults intersect to make various
patterns, one being the idealized “orthogonal” pattern prominently
characterizing plate boundaries. However, the processes respon-
sible for the emergence and stability of such patterns remain
poorly understood. Mid-ocean ridges are a hierarchical system of
discontinuous ridge segments offset by different types of discon-
tinuities (Macdonald et al., 1991). Segmentation at different scales
has invited multiple theories for their origin (e.g., Macdonald et al.,
1991; Phipps Morgan, 1991; Abelson and Agnon, 1997). It remains
unclear whether the hierarchy is the product of different mech-
anisms working at different scales or the scale-dependence of a
single mechanism. While the overall trend of mid-ocean ridges
is imposed by the geometry of continental breakup and passive
margin formation, the geometric coincidence between passive mar-
gins and mid-ocean ridges led Wilson (1965) to first propose that
transform faults are inherited from preexisting structures. Subse-
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quent studies proposed that stepping half-grabens (e.g., Cochran
and Martinez, 1988; McClay and Khalil, 1998), segmented gravity
and magnetic anomalies (e.g., Behn and Lin, 2000), or segmented
weak regions (e.g., Watts and Stewart, 1998) along passive mar-
gins ultimately lead to the discontinuities found along mid-ocean
ridges. However, other observations support the hypothesis that the
orthogonal ridge-transform system is emergent and not solely due
to preexisting conditions. Sandwell (1986) presented three lines of
evidence supporting this hypothesis: (1) that single straight ridges
can develop into an orthogonal pattern, (2) the existence of zero
offset fracture zones, and (3) a positive correlation between ridge
segment length and spreading rate.

Differences in the rate of energy dissipation between ridge seg-
ments and transform faults have been suggested to lead to the
orthogonal pattern (Lachenbruch, 1973; Froidevaux, 1973). Accord-
ing to this theory, energy dissipation can be more efficient at a
spreading center than a transform fault and, as a result, the mini-
mized ridge segment length by an orthogonal pattern results in the
least energy dissipation. However, it was subsequently shown that
the orthogonal pattern could be created without assuming higher
energy dissipation at the spreading centers (Oldenburg and Brune,
1975). Atwater and MacDonald (1977) also questioned the validity
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of the minimum energy dissipation argument based on inconsis-
tency with observations.

The observation of the oblique fabric of normal faults around
ridge-transform fault intersections is such that they must result
from both a ridge normal and a ridge parallel component of stress
(Gudmundsson, 1995). Gudmundsson (1995) proposed the expan-
sion of a plate’s perimeter as an origin of ridge-parallel tension.
However, Gudmundsson’s hypothesis does not address the possi-
bility that each ridge segment can grow instead of forming fracture
zones, and the observed fabric often requires a low degree of
mechanical coupling across transform faults and the associated
shear stresses (e.g., Fujita and Sleep, 1978; Fox and Gallo, 1984;
Grindlay and Fox, 1993; Behn et al., 2002). Also, changes in the
direction of plate motion was suggested to lead to the development
of the orthogonal pattern (Menard and Atwater, 1969), but this
mechanism is not sufficiently general to explain most present mid-
ocean ridge systems where changes in plate direction have been
limited. A more plausible source for ridge-parallel tension is the
cooling of oceanic lithosphere. Thermal cooling stresses make a sig-
nificant contribution to the stress state of oceanic plates. Heuristic
calculations (Collette, 1974), a calculation based on a plate cooling
model (Turcotte, 1974; Sandwell, 1986), the presence of near-
ridge seismicity (Wiens and Stein, 1984; Bergman and Solomon,
1984), and geoid anomalies over fracture zones (Parmentier and
Haxby, 1986; Haxby and Parmentier, 1988) all indicate that thermal
stresses can contribute significantly to a ridge parallel compo-
nent of stress. Thermal stresses are isotropic, but mid-ocean ridges
themselves and numerous ridge parallel faults can release ther-
mal stresses in a selective (i.e., ridge-perpendicular) direction when
these structures form (Fig. 1). Therefore, the resultant unreleased
stress due to cooling would be dominated by the ridge-parallel
component.

Analog experiments using paraffin wax have been more suc-
cessful than others in studying the emergence of patterns similar

to those found at mid-ocean ridges. Oldenburg and Brune (1972)
designed an experiment in which the surface of molten wax was
chilled by a fan. The basin containing the molten wax was heated
from below. One side of the solidified wax is pulled to generate
extensional stresses. They observed the spontaneous growth of an
orthogonal system of ridge, transform faults, and fracture zones
with characteristics similar to natural systems. They concluded that
the orthogonal ridge-transform fault system is a preferred mode
of plate separation and that a weak shear resistance on transform
faults is required for the system’s stability (Oldenburg and Brune,
1975). Based on the high volume change of cooling wax, Sandwell
(1986) interpreted that orthogonally intersecting structures made
in wax originated as a mechanism to release thermal stress. Wax
was also used to study the microplate formation in a fast-spreading
environment (Katz et al., 2005).

The success of the wax models implies that the orthogonal pat-
tern of ridges and transform faults are caused by a combination of
spreading and thermal stresses. However, to more fully understand
the physics while adding additional processes critical for mid-ocean
ridges, we turn to a numerical approach. Using numerical simula-
tions, known representative values for the Earth’s material can be
directly used in models. In addition, numerical experiments allow
for a better control on testable mechanisms and a wide range of
parameter values. Numerical models can also be used to make
explicit predictions of geophysical observations such as bathymetry
and gravity.

Our goal is to reveal the mechanism responsible for the emer-
gence of the orthogonal pattern at mid-ocean ridges using a 3D
numerical method. Our approach is distinguished from previous
3D numerical models for the mid-ocean ridge system that treated
transform faults as pre-existing structures or as boundary condi-
tions (e.g., Parmentier and Phipps Morgan, 1990; Furlong et al.,
2001). In our study, transform faults and fracture zones, as well
as ridge segments are all created as a response of a mechanical sys-

Fig. 1. Ridge segments and other ridge-parallel structures can release thermal stress in the ridge-normal direction, while leaving ridge-parallel residual stresses. Arrows
represent the direction and the magnitude of components of thermal stresses aligned along ridge-perpendicular and ridge-parallel directions. (a) Before ridge segments are
created, thermal stress is isotropic and its horizontal components are equal in magnitude. The future location of ridge segments are marked by the pairs of gray dashed lines.
(b) The ridge-parallel component becomes dominant when the ridge-normal principal stress is released by the formation of ridge segments (pairs of solid lines). A possible
trace of a structure connecting the ridge segments is denoted by a dased curve.
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tem to given initial and boundary conditions. A 2D elastic damage
model has been developed (Hieronymus, 2004), but differed from
ours in terms of geometry, material properties, and the physical
processes incorporated. We focus our attention on the first order
segments and discontinuities, corresponding to ridge segments and
transform faults, respectively (Macdonald et al., 1991).

2. Numerical method

We use SNAC, an explicit Lagrangian finite difference code,
to model the dynamics associated with the initiation of ridge-
transform fault systems in three-dimensions. SNAC is a framework-
based software, using the energy-based finite difference method
to solve the force balance equation for elasto-visco-plastic mate-
rials (Bathe, 1996). The details of the algorithm are presented in
Appendix A.

Implementing the elasto-visco-plastic material type in SNAC
is crucial because localization of plastic strain occurring due to
bifurcation inherent to plasticity can be regarded as a large-scale
manifestation of localized deformation like fault zones. Propagating
ridge segments, transform faults, and fracture zones are all repre-
sented by localized plastic strain. In addition, a vertical gradient of
temperature determines the transition from cold plastic material
near the top to hot Maxwell viscoelastic material below.

Cooling of newly formed lithosphere is one of the key phe-
nomena for modeling mid-ocean ridge system. SNAC computes
thermal diffusion using the same type of solver as the solution of the
momentum equation. Temporal variation of the temperature field
contributes to the isotropic components of stress through thermal
expansion and contraction.

We use an elasto-visco-plasticity (EVP) model in which total
strain is the sum of contributions from elastic, viscous, and plastic
components (e.g., Albert et al., 2000). This material model assumes
a Maxwell viscoelastic rheology at all times, but if the stress exceeds
a specified criterion before being relaxed then yielding occurs.
We use a Mohr–Coulomb yield criterion and a power-law viscos-
ity (Lavier and Buck, 2002). The EVP constitutive relations allow
a wide range of material behavior to emerge: elastoplastic when
temperature is low and viscoelastic at high temperatures. To induce
localization, a strain-weakening rule is applied to the yield criteria.
The rule is usually a piecewise linear function of accumulated plas-
tic strain such that the plastic material properties (cohesion and
angle of internal friction) decrease with increasing plastic strain
(Lavier et al., 2000). In addition, elements are assigned initial finite
plastic strain so that localization initiates from those elements. In
this way, we can prevent the occurrence of localized plastic defor-
mation adjacent to the boundary of the computational domain.

3. Model setup

We model a hot block of oceanic lithosphere that cools while
it is stretched at a given spreading rate. Spreading initiates ridge
segments, which in turn releases accumulating thermal stress only
in the ridge-normal direction. The ensuing process is governed by
given parameters and boundary conditions.

The domain is 60 km × 5 km × 60 km and is discretized into
1-km cubic elements (Fig. 2a). Initial temperature is uniformly
1300 ◦C except along the top surface, where temperature is 0 ◦C.
The top surface remains isothermal at 0 ◦C, while the bottom sur-
face has a composite boundary condition. By the zero heat flux
condition, heat is lost until the bottom temperature decreases to
750 ◦C; thereafter the bottom temperature is kept at 750 ◦C. These
thermal initial and boundary conditions are intended to be those of
hypothetically pristine oceanic lithosphere that is about to cool and
extend. Heat fluxes are zero on all the side walls. We assume that the
distinctive thermal structure of slow and fast mature ridges result
from long-term spreading, not given initially. In reality, the thick-
ness of lithosphere is not constant over the distance of 60 km across
a spreading center. However, we assumed it to be initially uniform
in order to exclude the influence of pre-existing structures. If the
variation in lithospheric thickness is predefined, so would the pat-
tern we seek because the thinnest part will develop into spreading
centers unless other perturbations are considered.

Velocity boundary conditions are applied to two sidewalls while
the other two are free-slip (Fig. 2b). The bottom surface was
supported by a frictionless denser foundation called a Winkler
foundation (e.g., see p. 95 in Watts, 2001). This bottom boundary
condition works in such a ways that normal tractions are applied in
the opposite direction to the deflection of the bottom surface and
with a magnitude given by the surface integral of pressure change,
(�m − �f)g �h(x), where �m is the mantle density at the bottom of
the domain, �f is the assumed density of the foundation, g is the
gravitational acceleration, and �h(x) is the change in the vertical
coordinates at location x. For simplicity, we assume (�m − �f) is
fixed at at 50 km/m3. The two tangential components of traction
are set to be zero.

Two ridge segments develop as narrow regions of localized
strain. Strain localization initiates from two “seeds”, elements with
non-zero plastic strain and offset by 30 km in both horizontal
directions (Fig. 2a). In addition, we assumed a piecewise linear
function in strain weakening such that 100 MPa of cohesion is
reduced to 50 MPa at 1% plastic strain, and to 10 MPa at 3%. All the
plastic parameters (cohesion, internal friction angle, and dilation
angle) are kept the same after plastic strain grows larger than 3%.
Unfortunately, strain weakening is poorly constrained by geological

Fig. 2. Geometry of the model domain. (a) 60 km × 5 km × 60 km domain with equal 1 km grid spacing in each direction. Two plastic seeds, controlling initial localization, are
embedded with 30 km separation in the x and z directions. (b) Two side surfaces normal to the x axis are pulled at a constant velocity. The other two sides, normal to z axis,
have free-slip boundary conditions, where the normal velocity (�z) and tangential components of traction (tx and ty) are 0. Zero heat flux is assumed for all the side walls,
but the top surface temperature is fixed at 0 ◦C. See the text for thermal and mechanical boundary conditions for the bottom surface.
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Table 1
Parameter values

Model � (cm/year) ˛v (×10−5 K−1) � (×10−6 m2/s) �ps,1 C1 (MPa) �ps,2

Base 3 6 1.12 0.01 50.00 0.03
1 1 6 1.12 0.01 50.00 0.03
2 10 6 1.12 0.01 50.00 0.03
3 3 5.49 1.12 0.01 50.00 0.03
4 3 6.51 1.12 0.01 50.00 0.03
5 3 6 0.915 0.01 50.00 0.03
6 3 6 1.36 0.01 50.00 0.03
7 2 6 1.12 0.01 50.00 0.03
8 4 6 1.12 0.01 50.00 0.03
9 3 5.76 1.12 0.01 50.00 0.03
10 3 6.24 1.12 0.01 50.00 0.03
11 3 6 1.02 0.01 50.00 0.03
12 3 6 1.22 0.01 50.00 0.03
13 2.5 6 1.12 0.01 50.00 0.03
14 3.5 6 1.12 0.01 50.00 0.03
15 3 5.88 1.12 0.01 50.00 0.03
16 3 6.12 1.12 0.01 50.00 0.03
17 3 6 1.07 0.01 50.00 0.03
18 3 6 1.17 0.01 50.00 0.03
19 3.3 6.6 1.12 0.01 50.00 0.03
20 3.03 6.06 1.12 0.01 50.00 0.03
21 3.3 6 1.232 0.01 50.00 0.03
22 2.7 5.4 1.12 0.01 50.00 0.03
23 2.97 5.94 1.12 0.01 50.00 0.03
24 2.7 6 1.008 0.01 50.00 0.03
25 4.68 6.6 1.12 0.01 50.00 0.03
26 4 6.34 1.12 0.01 50.00 0.03
27 3.73 6.24 1.12 0.01 50.00 0.03
28 2.27 5.76 1.12 0.01 50.00 0.03
29 2 5.69 1.12 0.01 50.00 0.03
30 1.34 5.49 1.12 0.01 50.00 0.03
31 2.5 5.65 1.12 0.01 50.00 0.03
32 2.0 5.46 1.12 0.01 50.00 0.03
33 1.34 5.19 1.12 0.01 50.00 0.03
34 2.00 5.19 1.12 0.01 50.00 0.03
35 2.50 5.19 1.12 0.01 50.00 0.03
36 1.34 4.90 1.12 0.01 50.00 0.03
37 2.00 4.90 1.12 0.01 50.00 0.03
38 2.50 4.90 1.12 0.01 50.00 0.03
W1 3 6 1.12 0.01 50.00 0.02
W2 3 6 1.12 0.02 50.00 0.05
W3 3 6 1.12 0.01 25.00 0.03
W4 3 6 1.12 0.01 75.00 0.03
W5 3 6 1.12 0.01 50.00 0.03
W6 3 6 1.12 0.01 50.00 0.03
W7 3 6 1.12 0.01 43.75 0.03
W8 3 6 1.12 0.01 56.25 0.03

Density = 2950 kg/m3; Lame’s constants (�, 	) = 30 GPa, respectively; �ps,0 = 0, C0 = 100 MPa, C2 = 10 MPa; n = 3, Q = 380 kJ/mol, and A = 1.73 × 105 (Pa s)1/n for viscosity.

observations (Scholz, 2002; Lavier et al., 2000). Parameters related
to the constitutive law are listed in Table 1.

3.1. Base model and its variations

One model is referred to as the “base case” and produced a
nearly orthogonal transform fault that connected ridge segments
(Fig. 3). The imposed constant spreading rates are equivalent to
time-varying forces required to maintain the spreading rate (Lavier
and Buck, 2002; Gurnis et al., 2004). The spreading-parallel compo-
nent of this force (Fx), as a function of time, is useful for monitoring
the change in the state of stress. Fx for the base case (Fig. 3a) shows
that the system was initially in equilibrium with 1.22 × 109 N/m
of external force remaining invariant for about 7000 years. The
pattern of localization was determined during this phase, and it
was not affected by subsequent deformation. When the subsurface
layer cooled sufficiently, the exponentially increased temperature-
dependent viscosity rendered the layer elastic and thus the overall
stiffness of the model increased (Fig. 3b). Consequently, Fx increases
in response to this change after 7000 years, manifest as a bulge in

Fx versus time. As deformation due to spreading and thermal stress
continues, the cooled portions of the layer yield and become weaker
beneath ridge segments (Fig. 3e). This leads to the decrease of Fx

(Fig. 3a).
The total elapsed time, about 15 kyears, was insufficient to

develop into the morphology seen at mature mid-ocean ridges, as
shown with topography along with the deformed mesh and accu-
mulated plastic strain (Fig. 4). However, it shows the deepening
trend of bathymetry away from ridge segments and troughs along
ridge-normal localized bands, consistent with an actual ridge-
transform fault intersection. The curvature of zones of localized
strain at the inner corner is consistent with the fabric of structures
observed at slow spreading ridge-transform fault intersections (Fox
and Gallo, 1984).

Models varied from the base case in terms of their pattern of
localization. The patterns could be grouped based on their geome-
try into two modes: “connecting” and “overlapping” (Fig. 5). They
are end members of the modes of interaction between two mutually
approaching ridge segments. Connecting modes are further char-
acterized by the angle 
 between the connecting segment and the
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Fig. 3. (a) Fx , force required to extend the domain at the applied velocity in the x-direction as a function of time. (b) Depth profiles of temperature and viscosity are taken at
the point P marked in (a) and compared at different time steps (0, 3, 7, 10.2, and 15 kyears). The rise in Fx at ∼7 kyears coincides with the cooling and significant increase in
viscosity of the subsurface (1–2 km deep) layer. 3D rendering of the second invariant of plastic strain at the same set of time steps: (c) 3 kyears, (d) 7 kyears, (e) 10.2 kyears,
and (f) 15 kyears.

Fig. 4. A 3D representation of the surface topography from the base model at 15
kyears on top of the model domain. Plastic strain on the surface of the model domain
indicated through grey scale shading.

ridge-normal direction; 
 ranges from 0◦ to 45◦, and the orthog-
onal pattern, corresponding to 
 = 0◦, falls in the middle of the
morphological range from high-
 connecting modes to overlapping
modes.

Fig. 5. Modes of interaction between two mutually approaching ridge segments.
The orthogonal ridge-transform fault geometry is a special case of the “connecting”
mode. The angle, 
, is used as a measure of a connecting pattern’s orthogonality
spanning the range 0–45◦ .
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To assess quantitatively the relative influence of thermal stress
to spreading-induced stress on the appearance of localization pat-
terns, we introduce a dimensionless number � . � is defined as the
ratio of the first invariant of thermal stress to the first invariant of
spreading-induced stress:

� = |Itherm
� |
|Ispr

� | . (1)

Spreading-induced stress is given by constitutive relations for lin-
ear isotropic elasticity:

�spr
ij

= �ıij�
spr
kk

+ 2	�spr
ij

, (2)

where � and 	 are Lame’s constants. Thermal stress is given as (e.g.,
Boley and Weiner, 1960):

�spr
ij

= −(3� + 2	)ıij˛l(T − T0), (3)

where ˛l is the linear thermal expansion coefficient, T is tempera-
ture, and T0 is the reference temperature. When extension in one
horizontal direction and zero-strain in the other two directions is
assumed, extensional stresses are, from (2),

�spr
11 = �(�spr

11 + �spr
22 + �spr

33 ) + 2	�spr
11 = (� + 2	)�spr

11

�spr
22 = ��spr

11

�spr
33 = ��spr

11

(4)

Then, the first invariant of spreading-induced stress becomes:

Ispr
� = �spr

11 + �spr
22 + �spr

33 = (3� + 2	)�spr
11 . (5)

The first invariant of thermal stress is obtained from (3):

Itherm
� = �therm

11 + �therm
22 + �therm

33 = −(3� + 2	)˛v(T − T0), (6)

where ˛v is the volumetric thermal expansion coefficient and is
equal to 3˛l. Substituting (5) and (6) into (1) and taking the absolute
value, we obtain

� = |(3� + 2	)˛v(T − T0)|
|(3� + 2	)εspr

11 | = |˛v(T − T0)|
�spr

11

= |˛v(�∇2T) �t|
�̇spr

11 �t
≈ ˛v(� �T/D2)

�̇spr
11

= �˛v �T

�̇spr
11 D2

, (7)

where �̇spr
11 is the strain rate associated with a half-spreading rate,

�t is the characteristic time of thermal diffusion, �T is the absolute
temperature difference between surface and bottom, � is the ther-
mal diffusivity, D is the thickness of the domain. �̇spr

11 can be further
approximated as �/L, where � is the half-spreading rate and L is the
width of the domain:

� = �˛vL �T

vD2
. (8)

When � is defined as in (8), it represents the relative importance
of conductive cooling with respect to spreading in determining the
dominant state of stress for emergent oceanic lithosphere although
it is not the stress ratio itself. Since the domain geometry (D and L)
and the temperature initial condition (�T) are common to all the
models, we vary the remaining three parameters, �, ˛v, and � to
determine their influence on the pattern of localization.

Another measure of the system is introduced because the same
value of � can be achieved by different values of parameters that are
varied in the same proportion. Those models with the same � but
different parameters can produce considerably different patterns
because the growth rates of stresses from cooling and spreading
are different even for the proportionally varied parameters. The
absolute value of rates is important because the material strength
governed by plasticity is finite. So, we use the Peclet number as
another measure of the system which we physically interpret here

Fig. 6. The piecewise linear variation of cohesion as a function of accumulated plas-
tic strain (�ps). Two-stage weakening was assumed in this study. ω, the work per
unit volume done to reduce 90% of the initial cohesion, is used to quantify different
weakening rules. C0 and C2 are 100 and 10 MPa, respectively, for all the models.

as the ratio of forced spreading rate (�) to cooling rate (�/D). To
ensure that separate measures of each process are not inherently
correlated by sharing common parameters, we compute them with
respect to reference values of � and �/D. Thus, a pair of non-
dimensional numbers, and � ′ and Pe′, are defined as

� ′ = �˛vL �T

vrefD2
, (9)

Pe′ = vDref

�ref
, (10)

where �ref is 3 cm/year, �ref is 10−6 m2/s, and Dref is 5 km.
Strain weakening during plastic deformation is characterized by

a reduction in cohesion, C(�ps), as plastic strain (�ps) accumulates.
We define a dimensionless number, ω, as follows:

ω = 1.0 −
∫

C(�ps) d�ps

Cref�
ref
ps,2

, (11)

where Cref is a reference value of cohesion, and �ref
ps,2 is a reference

value of accumulated plastic strain where cohesion becomes 10%
of its initial value (Fig. 6). Cref and εref

ps,2 are 100 MPa and 3%, respec-
tively. ω is proportional to the normalized work per unit volume
done to reduce cohesion until plastic strain reaches a given value,
�ps,2. In this study, the initial value of cohesion (C0) and �ps,2 are
always equal to Cref and �ref

ps,2. If ω is higher than the base model,
then more work would have been done to reduce cohesion; such a
model ends up with lower cohesion even with the same amount of
accumulated plastic strain. Table 1 lists values of all model param-
eters.

4. Results

We group models either with different � and the same weak-
ening rates (base case to model 38 in Table 1) or models with the
same � but different strain weakening rules (W1–W8).

4.1. Variation of �

Using a subset of models with the same weakening rate (base
case to model 38 in Table 1), localization patterns show a clear trend
in the modes of interaction between ridge segments when arranged
in order of increasing � (Fig. 7). Patterns corresponding to relatively
high � (>0.24) are those of oblique spreading ridges. For the high-
est � , corresponding to the strongest influence of thermal stress,
two propagating segments are connected by a 45◦-oblique ridge
segment. 
 decreases as � becomes smaller and thus the spreading-
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Fig. 7. Patterns of localized plastic strain, made on the top surface of models, are
arranged in order of increasing � . The patterns were captured (a) after 10.6 kyears
and (b) after a given amount of spreading-induced strain, 0.535%. As � increases, the
mode of interaction between two mutually approaching ridge segments changes
from oblique rifting through orthogonal rifting to overlapping-bending.

induced stress becomes stronger. Eventually, a nearly orthogonal
pattern emerges within a narrow range of � , from 0.22 to 0.23.
When � becomes smaller than 0.22, two ridge segments grow, over-
lap, and then bend toward each other. When the spreading-induced
stress becomes even stronger (� < 0.1), each segment propagates
through the domain instead of bending or being connected by a
shear band. The same trend is observed in both results after a con-
stant time (Fig. 7a) or after constant extension (Fig. 7b).

When the force associated with spreading is plotted as a func-
tion of extension, we find two clearly divided populations of curves
that correspond to the connecting and overlapping modes (Fig. 8).
In terms of the rise time of Fx, the base model falls on the bound-
ary between these two groups. The differences in the shape of the

Fig. 8. For various models, Fx as a function of amount of extension. The base model
(thick solid line) forms a boundary between curves for models in connecting modes
(thin gray solid lines) and those models exhibiting overlapping modes (thin dashed
lines).

Fig. 9. Work done by the external extension until the peak in Fx versus � for models
with a single parameter (�, ˛, or �) varied from the base model (gray symbols)
and those with two parameters varied simultaneously (either � and ˛, or � and
�, black symbols). Work and � show an overall negative correlation. Models with
connecting-mode patterns (crosses) show an approximately monotonic increase in

 as � increases and work decreases. However, the modes of deformation and 

appear mixed in the low range of � , indicating that � and work cannot be unique
indicators of emerging patterns. The overlapping-mode models (triangles) exhibit
neither a broad variation in 
 nor a one-to-one relation between work and � .

curves in Fig. 8 can be quantified when the curves are integrated
over their extended distance. The portion of the Fx curves after the
peak does not exhibit a clear distinction between modes as before
the peaks; consequently, we integrate Fx from 0 to the extension
corresponding to the peak of Fx. The integrated values have units of
work per unit length. When only one of the parameters �, ˛, or � was
varied from the base model, the work decreases with increasing �
(gray symbols, Fig. 9). As � decreases and the work increases, the
angle between the connecting segment and the spreading direc-
tion (
, Fig. 5) decreases, marking the transition to the overlapping
mode at its minimum. Among models in the overlapping-mode,
the correlation between work or � and 
 is not as clear. When two
parameters (� and ˛, or � and �) are varied simultaneously, mod-
els do not show systematic variations in mode or 
 (black symbols,
Fig. 9). Modes and the values of are mixed in the low-� ranges. Thus,
� and work cannot uniquely predict the emerging pattern for all the
models even though there is an obvious correlation.

The inability of predicting the emergent pattern is resolved
when the Peclet number is considered as well, as shown when � ′ is
varied against Pe′. Since Pe′ is a separate measure of the spreading
rate with respect to a reference cooling rate, we are able to sepa-
rate the two rate-dependent processes that are inherent in � . All
the models with the same weakening rate are plotted in Fig. 10. In
contrast to the previous work versus � plots, here the domains of
each mode can be clearly divided. The boundary between the two
modes that define the orthogonal pattern can be roughly traced
along a single curve. The variation in 
 is also systematic within the
connected-mode domain. For a given spreading rate (constant Pe′),

 increases as thermal stress becomes dominant; for a given set of
cooling-related parameters (constant � ′), 
 increases as spreading
becomes slower. The inferred stable region of orthogonal patterns
suggests that when spreading rate is sufficiently small the overlap-
ping mode is unable to form, regardless of � ′.

The transition from one faulting pattern to another occurred at
specific values of Pe′, which was confirmed by a suite of higher reso-
lution models. We solved models on a mesh with half the horizontal
grid spacing. The vertical resolution was not changed to maintain
the same cooling rate with the original models and � ′ was fixed at
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Fig. 10. Plot of Pe′ versus � ′ . The domain of connecting and overlapping mode is well
defined and the boundary between them defines the stability field of the orthogonal
pattern. Within the connecting-mode domain, the variation in 
 is systematic: 

becomes smaller as the values of Pe′–� ′ pair gets closer to the inferred region of
orthogonal pattern.

0.202, the same value as the reference model. As Pe′ increased from
1.585 (corresponding to the spreading rate, � = 1 cm/year) to 4.756
(� = 3 cm/year), models with the higher resolutions exhibited the
same transition with the reference grid spacing from the obliquely
connecting to the orthogonal pattern (Fig. 11). The patterns varied
from the orthogonal to overlapping when Pe′ was further increased
to 6.342 (� = 4 cm/year) (Fig. 11), as also seen in the models with the
reference resolution.

Fig. 11. Models with a twice higher horizontal resolution than those in Fig. 10. con-
firm that the transition of patterns occurs at consistent values of Pe′ . The � ′ of 0.202
was the same for all the compared models.

Fig. 12. For models with different weakening rates Fx is plotted as a function of
the amount of extension. Models that are relatively slower in weakening (thin gray
lines) develop larger differences between the lowest and the highest value in Fx and
connecting-mode patterns emerge from them. In contrast, faster-weakening models
(dashed lines) showed smaller differences between the lowest and the highest Fx

and developed overlapping-mode patterns. This solid line corresponds to the “base”
model, which developed an orthogonal pattern.

4.2. Variation in rate of weakening

The rate of strain weakening is another pattern-controlling fac-
tor. The eight models (W1–W8 in Table 1) share the two-stage
weakening parameterization (Fig. 6), but differ in the rate of cohe-
sion reduction. Fx-extension curves for these eight models are
shown in Fig. 12. Models with higher ω consistently resulted in
the overlapping patterns, while the connecting mode appeared
in the models with lower ω. The map-view patterns from those
models, taken after 10 kyears, are arranged in the order of increas-
ing ω in Fig. 13, demonstrating the sensitivity of pattern to
ω.

ω represents the amount of cohesion reduced after strain weak-
ening occurred. Since the first appearance of localization from
the seed elements is ridge segments that propagate in the direc-
tion perpendicular to the spreading direction, different values of
ω have a prominent influence on that propagation. When a model
has a higher ω while all other parameters remain the same com-
pared to the base case, a lower level of cohesion is achieved and
the propagation of ridge segments is facilitated. The net effect is
equivalent to reducing � by increasing the spreading rate, and the
mode of interaction between two ridge segments becomes over-

Fig. 13. Patterns of localized plastic strain on the top surface are arranged in the
increasing order of ω. The smaller ω is, the larger is the cohesion at any point in
accumulated plastic strain as long as cohesion is larger than 10% of its initial value
(see Fig. 6). Patterns show the transition of patterns from high-
 connecting modes
through the orthogonal pattern to overlapping modes as ω increases.
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lapping. In contrast, when a model has a lower value of ω while all
other parameters remain the same as the base model, the model
remains at a relatively high level of cohesion and ridge propaga-
tion is hindered. As a result, a high-
 connecting mode emerges
because the net effect is to raise � by lowering the spreading
rate.

5. Discussion and conclusion

Our model results are in good agreement with observations:
as spreading rate (�) increases while all other variables remain
constant, � decreases and the mode of ridge interaction changes
from connecting to overlapping. Consistent with this trend, orthog-
onal ridge-transform fault intersections are often found in the
slow-spreading Mid-Atlantic Ridge (MAR). The overlapping mode
of interaction would correspond to the formation of microplates,
which are found only at the fastest spreading East Pacific Rise
(EPR) (Naar and Hey, 1991). The large-
 connecting modes for the
models at the lower end of Pe′ appear to be relevant to the very-
slow-spreading ridges (Dick et al., 2003). The Southwest Indian
ridge (SWIR) between the Atlantis II and Gauss fracture zones,
one of the very-slow-spreading oceanic ridges, shows a resem-
blance to the patterns of large-
 connecting mode seen in our
low-� models: segments that are normal to the spreading direc-
tion alternate with oblique ones (see Fig. 5a in Dick et al., 2003).
According to Atwater and MacDonald (1977), observations show
that slow spreading centers (� < 3 cm/year) are oblique to trans-
form faults in most cases; spreading centers with intermediate
rates (� ≈ 3 cm/year) intersect transform faults both orthogo-
nally and obliquely; only fast spreading centers (� > 5 cm/year)
are nearly orthogonal to transform faults. Thus, it is consistent
with these observations that the slow-spreading Southwest Indian
ridge falls in the high-
 connecting-mode domain of the Pe′–� ′

plot, while the intermediate-spreading mid-Atlantic ridge corre-
sponds to the relatively low-
 near the field of orthogonal patterns
(Fig. 10).

The deformation patterns found in the models are consistent
with where actual ridge systems fall in the domain of Pe′–� ′ (star
symbols in Fig. 10). Assuming the same thermal parameters with
the base case, the � ′ value remains the same with that of the base
case, 0.22, while the half-spreading rate (�) determines the value of
Pe′ and thus the position on the plot. The SWIR with � = 1 cm/year
is located well within the high-
 connecting-mode domain; the
MAR, spreading at � = 2.5 cm/year, falls in the low-
 connecting-
mode region, implying that slight variations in thermal state or
spreading rate can yield both orthogonal and obliquely connect-
ing patterns; and the fast-spreading EPR (� = 6 cm/year) is in the
overlapping-mode region.

It is possible that simplifications made in our model are the
source of the discrepancy between modeling results and observa-
tions. For example, one of the factors that influence the localization
pattern but was not addressed in this study is the offset between
ridge segments. While observations on the newly formed oceanic
basins support the discrete nucleation of spreading centers and
their propagation as assumed in our model (e.g., Taylor et al., 1995),
we did not take into account other characteristics inherited from
the continental rifting phase. The size of our models is also fixed at
the smallest possible for the first-order segmentation, and only the
initial stage of pattern formation is considered. The mid-ocean ridge
systems, however, exhibit a relatively wide range of ridge segment
and transform fault lengths. They show a large amount of variability
in the patterns of ridge-transform fault intersections, too. The EPR,
for example, is “dominated” by overlapping segments but also has
some orthogonal ones. The MAR has both orthogonal and oblique

segments. The SWIR and the Gakkel ridge show the most striking
variability implying that for the same spreading rate adjacent seg-
ments can be either orthogonal or oblique (M. Cannat, personal
communication). However, it can be inferred from our model that
segmentation is likely to be variable for one given spreading rate
because factors such as magma supply rates, hydrothermal cooling
and rheological properties are critical in determining the nature
of segmentation and they are highly variable along axis as well as
between mid-ocean ridge systems.

The assumed value of volumetric thermal expansion coefficient
(˛v) needs further justification. Typical values of ˛v for rocks com-
posing oceanic crust are (2–3) × 10−5 K−1 (Turcotte and Schubert,
2001), whereas we take 6 × 10−5 K−1 as a reference value. Volume
change due to solidification is included in this larger value. Since
oceanic crust was once melted and our initial temperature is well
above the “elastic temperature limit” (∼700 to 900 ◦C) (Reiter et al.,
1987), we believe that it is essential to account for thermal stresses
accumulated since the time of partial melt solidification, provided
that newly formed oceanic crust can retain at least a portion of those
stresses. If the liquid-to-solid phase change is taken into account, a
jump in density (inversely proportional to volume change in case
of mass conservation) is expected at the moment of phase transi-
tion (e.g., Kushiro, 1980). Below the elastic temperature limit, ˛v

becomes close to the conventional value. Thus, the value of ˛v we
used can be thought of as an average over the entire cooling pro-
cess. One of the waxes that easily created the orthogonal patterns
(Oldenburg and Brune, 1975), Shell Wax 200, is also characterized
by a large density change from solidification and subsequent cool-
ing (Sandwell, 1986).

Mantle upwelling patterns and their relation to along-axis seg-
mentation have been studied extensively (e.g., Parmentier and
Phipps Morgan, 1990; Shaw and Lin, 1996; Barnouin-Jha et al.,
1997; Magde and Sparks, 1997; Choblet and Parmentier, 2001).
However, the causal relation between them is not clear (Phipps
Morgan, 1991). The time scale of mantle flow models is also sig-
nificantly different from that of this study: it takes no longer
than 10 kyears for the patterns of strain localization to emerge,
while the time scale associated with mantle convection is typically
on the order of million years. The segmentations were specu-
lated to cause axial variations in mantle upwelling, not vice versa,
because the patterns were made without the organized man-
tle upwelling in numerical experiments with an elastic damage
model (Hieronymus, 2004). Our results support this point of view
because the patterns were created without explicit consideration
of mantle flow. Thus, we suggest that the patterns of ridge seg-
ments and transform faults are determined during the earliest
period of spreading without substantial influence from mantle
flow patterns. Later in time, the patterns are possibly modified
by the change in plate motion, mantle upwelling, and magma
supply.

Fracture zones were made in our models as a response to
thermal stress. The thermal stress origin is consistent with pre-
vious analyses on thermal stress (Collette, 1974; Turcotte, 1974;
Sandwell, 1986) and the role of ridge segments to release only
the ridge-normal component of thermal stress assumed in this
study. The orientation of their straight portion is parallel to
the spreading direction as observed in mid-ocean ridge systems
and wax experiments. The timing of fracture zone formation was
always later than the emergence of patterns, which confirms the
thermal origin of fracture zones because a sufficient amount of
thermal stress alone would take longer to accumulate until yield-
ing. Fracture zones were found to connect to the end of the
non-connected branch of ridge segments rather than to extend in
parallel from transform faults as most often found in the mid-ocean
ridge systems (Fig. 4).
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Similar patterns were found to emerge from 2D elastic dam-
age models (Hieronymus, 2004). Comparable patterns included
oblique 45◦-connection (OC), transform fault (TF), and overlap-
ping spreading centers (OSC). While keeping all other parameters
the same as in their TF models, OCs require a stronger shear
weakening due to “distortional energy” (defined as the double
contraction of deviatoric stress and deviatoric strain tensors),
while OSCs need a larger tensile strain as well as zero con-
tribution to shear weakening from the distortional energy and
the second invariant of deviatoric stress. The importance of the
amount of tensile strain is comparable to our results: larger
applied strains correspond to faster spreading rates in terms of
emergent patterns. Adjusting their damage properties roughly cor-
responds to varying our strain-weakening parameter, ω. However,
the fundamental difference from our study is their emphasis on
material properties rather than loading conditions. Although it
was implied that different oceanic lithospheres are composed of
inherently different materials, Hieronymus’s study did not address
the reason and processes responsible for such heterogeneity. On
the contrary, we showed that the inclusion of thermal stresses
is critical to determining the patterns in the mid-ocean ridge
systems and that the differently loaded ridge systems can pro-
duce different patterns even for the same material properties.
This allows our work to be more closely linked to the under-
lying physics as well as previous works which invoked thermal
stress as the key driving force in mid-ocean ridge segmenta-
tion (Oldenburg and Brune, 1972, 1975; Collette, 1974; Turcotte,
1974; Sandwell, 1986). We note that rheology and loading, the
two fundamental aspects of continuum mechanical problems, are
not mutually exclusive. In the future it would be desirable to
adopt an elasto-plasticity combined with sophisticated damage
models.

In summary, we showed that selectively released thermal stress
can be a significant source of ridge-parallel tension. Numerical
thermo-mechanical models showed that the resultant ridge-
parallel tension from cooling and ridge-normal extension by
far-field tectonic forces together create variation in the mode of
interaction between two mutually approaching ridge segments.
The ratio of thermal stress to spreading-induced stress is a first-
order measure of the mode that subsequently develops. When the
rates of each driving process are measured separately, the models
were clearly divided into different modes of interaction. In general,
the larger ratio of thermal stress to spreading-induced stress leads
to the connecting mode, while the smaller ratio to the overlap-
ping one. This correlation can translate to the observed correlation
between the spreading rate and the modes of intersection between
spreading centers and transforms faults. Magma-supply models
have been successful in explaining the along-axis variability of
mid-ocean ridge systems. Factors considered significant in those
models such as magma supply rate and hydrothermal cooling even-
tually give rise to the local variations in thermal state. In that sense,
our thermo-mechanical model would be complementary to such
a long-term mode. A better understanding of the segmentation of
the mid-ocean ridge systems would come from longer-term models
that incorporate the continental rifting and magma supply mod-
els. In light of the high sensitivity of models to strain-weakening
rates, it would be also crucial to use geologically constrained plastic
parameters.

Acknowledgements

This is contribution number 9149 of the Division of Geologi-
cal and Planetary Sciences and 41 of the Tectonics Observatory.
Development of SNAC was partially supported by the NSF ITR
program under EAR-0205653. All calculations carried out on the

Fig. A1. (a) Two configurations of five tetrahedra in a hexahedral element used in the
mixed discretization. Numbers next to apexes indicate the local node numbering. (b)
Conventions for the notation. Al and nl denote the face and the unit normal vector,
respectively, associated with a node l.

Caltech Geosciences Supercomputer Facility partially supported by
NSF EAR-0521699. Additional support provided through the Caltech
Tectonics Observatory by the Gordon and Betty Moore Foundation.

Appendix A. Algorithm of SNAC

A.1. Governing equations

The software package SNAC solves the momentum and the heat
energy balance equations in the following differential form:

∂�ij

∂xj
+ �gi = �

Dvi

Dt
, (A.1)

∂qi

∂xi
+ r = �Cp

DT

Dt
. (A.2)

In the momentum balance equation, � is the mass density, �i is
velocity, �ij is the Cauchy stress tensor, and gi is the gravitational
acceleration. T is temperature, Cp is the specific heat at constant
pressure, qi is the heat flux vector, and r is the volumetric heat
source. D/Dt represents the material time derivative. In this study,
no heat sources are considered, including shear heating. Viscosity
is temperature- and/or stress-dependent. The elastic component of
stress has an extra contribution from thermal stress.

A.2. Spatial discretization

A 3D domain is discretized into hexahedral elements, each of
which is filled with two sets of five tetrahedra (Fig. A1a). In this
mesh hierarchy, called the mixed discretization (Marti and Cundall,
1982), hexahedral elements are used only as an averaging unit
for volumetric strain. The averaging is enforced at all times, for
incompressible viscoelastic or plastic constitutive laws. For a given
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loading, responses of one set of tetrahedra can be different from
those of the other set because of the differently orientated faces of
tetrahedra in each set (e.g., Zienkiewicz et al., 1995). So, the use of
two equivalent sets of tetrahedra is required to ensure a symmetric
response.

The approximation of partial derivatives with respect to spatial
variables follows the integral definitions (e.g., Wilkins, 1964):∫

˝

f,i dV =
∫

∂˝

fni d�, (A.3)

where ˝ represents a tetrahedron as an integration domain, ∂˝ is
the boundary surfaces of the tetrahedron, fi is the partial derivative
of a variable f with respect to ith spatial coordinate, ni is the ith
component of the unit normal vector of the surface. If the partial
derivative is constant within a tetrahedron, it is evaluated as

f,i = 1
V

∫
∂˝

fni d�, (A.4)

where V is the volume of the tetrahedron. By further substituting
an algebraic expression for the surface integral, reordering terms,
and using

∫
∂˝

ni d� = 0 (when f = 1 in (A.4)):

f,i = 1
V

4∑
l=1

f̄ lnl
iA

l = 1
V

4∑
l=1

1
3

4∑
m=1, /= l

f mnl
iA

l = 1
3V

4∑
m=1

f m

4∑
l=1, /= m

nl
iA

l

= − 1
3V

4∑
m=1

f mnm
i Am, (A.5)

where l is the local node index varying from 1 to 4, Al and nl are
the area and the unit normal vector of the triangular surface not
having the node l as one of its apexes (Fig. A1b). Hereafter, we call
such a face a corresponding face to node l. f̄ l is the averaged f on the
surface l.

A.3. Nodal assemblage

We can convert the differential equation for momentum balance
(A.1) (the following description is applied to the heat equation in
the same fashion) to a principle of minimum work rate as in the
standard finite element formulation:∫

˝

ıvi�
Dvi

Dt
dV =

∫
˝

ıvi�gi dV +
∫

˝

ı�ij�ij dV, (A.6)

where �ij are components of the strain rate tensor, ı�i and ı�ij repre-
sent variations of velocity and strain rate, and ˝ here corresponds
to the whole domain. The local contribution to nodes correspond-
ing to each term can be computed by following the standard finite
element procedure for linear tetrahedral elements. However, our
method does not need to construct coefficient matrices such as
mass and stiffness matrices since it adopts an explicit time dis-
cretization. The resultant momentum equation is

Mn
Dvn

i

Dt
= 1

3
T [n]

i
+ 1

4
�[n]giV

[n], (A.7)

where the superscript n represents values evaluated at the global
node n, the superscript [n] means the sum of contributions from
all the tetrahedra having the global node n as an apex, Ti is the
traction that is defined as �ijnj and evaluated on a face of one of
the contributing tetrahedra. The nodal mass Mn is not the actual
inertial mass but an adjusted one to satisfy a local stability crite-
rion discussed in the Section A.5. The correspondence between an
apex and a face for the traction calculation is determined as in the
derivation of the expression (A.5). Note that the factor of 1/3 in the
traction term is inherited from (A.5) and the factor of 1/4 in the body

force term implies that the nodal contribution takes one quarter of
a tetrahedron’s volume-dependent quantity.

While looping over the entire set of nodes, mass and nodal
forces are assembled by adding up the contributions from bound-
ary conditions and all the tetrahedra sharing that node as one of
their apexes. The structured mesh of SNAC renders the assemblage
step conveniently static. The acquired net force (or heat flux) at
each node is used to update velocities and node coordinates (or
temperature.)

A.4. Damping and explicit time marching

We seek static or quasi-static solutions through a dynamic relax-
ation method. Instead of adding a usual velocity-dependent friction
term, we adopt a local non-viscous damping scheme (Cundall,
1987):

Fdamped
i

= Fi − ˛ sgn(vi)|Fi|, (A.8)

where Fi is the ith component of the residual force vector, ˛ is a
positive coefficient less than 1, sgn(�i) returns the sign of the i-
th component of velocity, �i. Once net forces are assembled and
damped, velocity and displacement at that node are updated using
a forward Euler method:

v
(

t + �t

2

)
= v

(
t − �t

2

)
+ �t

Fdamped
i

M
, (A.9)

x(t + �t) = x(t) + �tv
(

t + �t

2

)
. (A.10)

Damping is irrelevant to the update of temperature field, but the
same forward Euler method is used.

A.5. Mass scaling for numerical stability

The conventional Courant–Friedrichs–Lewy (CFL) condition
imposes a stringent upper limit for the time step size such that
dynamic relaxation takes long time to get quasi-static solution over
a geological time scale. To overcome this limit, a mass scaling tech-
nique is applied. This technique adjusts each nodal mass such that
the stability condition for a user-specified time step can be locally
satisfied. The stability condition to be satisfied, however, is not the
same as in the CFL condition, i.e., �t ≤ (lmin/�p), where �t is the time
step, lmin is the minimum element size, and �p is the P wave velocity.
Instead, through an analogy of continuum to an infinite mass-spring
system, we use a criterion that does not explicitly include length
scale and P wave velocity (see Chapter 9 in Bathe, 1996):

�t ≤ T

�
, (A.11)

where T is the period of system, 2�(m/k)1/2, m is a point mass, and
k is the stiffness of the spring attached to the point mass. Now,
reducing the infinite series of mass and springs in one dimension
to a single mass-spring system, the stiffness of that single system
becomes 4k, leading to an expression for the mass scaling:

m ≥ k(�t)2 (A.12)

For a given size of �t, the nodal mass is adjusted according to (A.12)
to automatically satisfy the stability critetion (A.11). The value of k
is computed by equating internal force contribution at a node with
−kui:

1
3

Ti = −kui ⇒
1
3

(� + 2	)(ε̇ii dt)niS = −k(vi dt) (no sum),
(A.13)
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where only the volumetric contribution from internal forces is
taken into account. By substituting the approximation for the par-
tial derivative (A.5) into the above equation and dividing both sides
by �i dt, we obtain

kl
i = 1

9V
(� + 2	)(nl

iS
l)

2
, (A.14)

where l is the local index for apexes of a tetrahedron and the
surface-related quantities are computed on the corresponding face
of the tetrahedron. Finally, a tetrahedron’s contribution to the
scaled mass is given as

ml = � + 2	

9V
max[(nl

iS
l)

2
, i = 1, . . . , 3] (A.15)

As in the standard FEM, appropriate mappings between local and
global indices are required.

A.6. Constitutive update

SNAC uses a general elasto-visco-plastic rheological model to
update the Cauchy stress tensor (e.g., Albert et al., 2000). First, the
initial guess of stress is acquired by the Maxwell viscoelastic consti-
tutive law (Poliakov et al., 1993). If this initial guess exceeds a given
yield stress, it is projected onto the yield surface using a return
mapping method (Simo and Hughes, 2004); otherwise, the vis-
coelastic stress update is retained. This elasto-visco-plastic model
can deal with various constitutive laws that are typically used for
the Earth’s crustal and mantle material as its limiting cases. For
example, elastic, viscoelastic and elastoplastic material are realized
in the following cases:

1. Elastic material corresponds to the limit of infinite viscosity and
yield stress.

2. Viscoelastic material corresponds to the limit of infinite yield
strength.

3. Elasoplastic material corresponds to the inifinte viscosity.

Using the viscoplastic rheology is physically more realistic than
using one of the limiting cases listed above since all materials have
dissipative mechanisms and hence viscosity. This viscosity also pro-
vides a length scale for the problem of localization, which in turn
enables physically meaningful mesh independent solution when
the mesh size is smaller than this length scale.

Since the nodal variables are velocities and whose spatial gra-
dients are deformation rates, we formulate the constitutive update
in terms of strain rate. The objective stress rate of choice is the
Jaumann or the corotational stress rate (���J) (Rudnicki and Rice,
1975):

���J = ∂(��)
∂t

− W �� − �� WT, (A.16)

where Wij = (1/2)(∂�i/∂xj−∂�j/∂xi) are the components of spin ten-
sor and �� is the increment of stress tensor. Correction to the
stresses due to rotation can be given as

�t+�t = �t + ���J �t (A.17)
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