Slab flattening trigger for isotopic disturbance and magmatic flare-up in the southernmost Sierra Nevada batholith, California

Alan D. Chapman*, Jason B. Saleeby, and John Eiler
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, USA

ABSTRACT

The San Emigdio Schist of Southern California permits examination of partial melting and devolatilization processes along a Late Cretaceous shallow subduction zone. Detrital and recrystallized zircon of the structurally highest portions of the schist bracket the depositional age to between ca. 102 and 98 Ma. Zircon oxygen isotope data from both lower-plate schist and upper-plate assemblages of the Sierra Nevada batholith (SNB) reveal a δ¹⁸O shift of ~1.5‰ between igneous (~5.5‰) and recrystallized (~7‰) domains. These results, taken with previous zircon and whole-rock δ¹⁸O measurements, provide evidence for devolatilization and/or partial melting of the schist and fluid ascent through overlying southwestern SNB upper-plate assemblages. Furthermore, the timing of mobile phase–rock interaction in the southwestern SNB is coincident with voluminous S-type magmatism in the southeastern SNB. We posit that during flattening of the Farallon slab, the schist was emplaced into the root zone of the southeastern SNB, where ensuing partial melting triggered a magmatic flare-up. Shallow subduction of the Cocos plate beneath central Mexico represents a close modern analog to this model.

INTRODUCTION

Continental arc magmatism is widely regarded to reflect melting of the mantle wedge by addition of fluids produced through metamorphism of trench sediments and oceanic crust in moderately to steeply dipping subduction zones (e.g., Bebout, 1991). In contrast, shallow subduction is commonly invoked to explain the termination and/or migration of arc magmatism (Dumitru et al., 1991; Saleeby, 2003). However, during slab flattening, subduction accretion assemblages may be transported into the magmatic source region of an active arc. Subsequent partial melting of fertile underplated material may trigger a brief episode of high-flux magmatism prior to arc shutoff. This study focuses on the spatial and temporal association of slab shallowing and magmatic flare-up in the Sierra Nevada batholith (SNB) of California to better understand how supracrystalline rocks are emplaced into continental arc source regimes and how the input of these materials influences magma productivity and composition.

We present here new and published in situ zircon U-Pb and oxygen isotope data to better understand aqueous fluid– and partial melt (i.e., mobile phase)–rock interaction accompanying Late Cretaceous shallow subduction of the Farallon plate beneath North America. Data presented herein lead us to suggest that devolatilization and/or partial melting of underplated subduction assemblages altered the isotopic composition of, and triggered a magmatic flare-up in, the SNB. We make the case that “relamination” of subducted material to the base of the arc crust (Hacker et al., 2011; Behn et al., 2011) drove copious magmatism and the generation of S-type granitoids in the southern SNB.

SOUTHERN SIERRA NEVADA BATHOLITH

Late Cretaceous to early Tertiary shallow subduction beneath the formerly (pre–San Andreas fault) contiguous southern SNB–Salinia–Mojave Desert region resulted in major lithospheric reorganization, associated with tectonic removal of subcontinental mantle and replacement with accretionary wedge and/or forearc basin material (e.g., Saleeby, 2003). These subduction accretion assemblages, known locally as the Pelona-Orocopia-Rand schist (Jacobson et al., 2011), lie in fault contact beneath the SNB and its pre-intrusive framework (Fig. 1). Exposures of these rocks in the San Emigdio Mountains (the “San Emigdio Schist”) are juxtaposed beneath deeply exhumed, ca. 100–135 Ma, mafic to intermediate batholithic (referred to below as “western domain”) rocks along the Rand fault, a Late Cretaceous low-angle normal shear zone that remobilized the shallow subduction megathrust (Chapman et al., 2010). Numerous Late Cretaceous shear zones separate western-domain rocks from a distinct “eastern domain” made up of shallow to mid-crustal, ca. 85–100 Ma, intermediate to felsic S-type plutons (Miller et al., 1996).

The San Emigdio Schist exhibits an upswing increase in metamorphic grade with evidence for fluid-saturated partial melting and extensive fluid flow restricted to shallow structural levels (<100 m from the Rand fault) of the exposure (Chapman et al., 2011). These features have been explained, in this and related schists, by a combination of shear heating along the subduction interface (Graham and England, 1976; Ducea et al., 2009) and tectonic underplating and progressive cooling beneath an initially hot upper plate following the onset of shallow subduction (Kidder and Ducea, 2006; Chapman et al., 2011; Kidder et al., 2013).

Figure 1. Geologic maps compiled by Chapman et al. (2011) showing southern California basement rocks (A) and sample locations (numbered stars) in the San Emigdio Mountains (B). Schist is shown in white in B. NV—Nevada; CA—California; AZ—Arizona; MX—Mexico; Mz—Mesozoic; N-Q—Neogene-Quaternary; LK—Late Cretaceous.
RESULTS

U-Pb detrital zircon geochronology was conducted on three new samples of the San Emigdio Schist (see the GSA Data Repository1) and integrated with existing data of Grove et al. (2003) and Jacobson et al. (2011). Sample depths (Fig. 2) were approximated based on the structural distance from the Rand fault and metamorphic grade. All samples exhibit (1) a major mid- to Late Cretaceous age peak with scattered Early Cretaceous, Jurassic, and Triassic ages, and rare pre-Mesozoic grains, and (2) maximum depositional ages of ca. 100 Ma, calculated from the three youngest zircon grains in each sample that overlap in age within error and exhibit oscillatory zoning. Zircon grains from samples collected >100 m from the Rand fault are characterized by simple oscillatory zoning and are interpreted to be detrital. Within ~100 m of the Rand fault, zircon grains exhibit 1–50-µm-thick cathodoluminescence (CL)-bright rims with complex zonation features that cross cut detrital cores. Such rims were not observed at deeper structural levels. Relative to less disturbed grains, these recrystallized domains are younger (ca. 99–91 Ma), with generally higher U concentration (2411–3197 ppm), U-Th ratios (generally >10; Fig. 2), and δ18O values (see below; Fig. 3). This 99–91 Ma age range likely reflects the timing of peak metamorphism of the schist. Similar overgrowths are reported from the related schist of Sierra de Salinas (Barth et al., 2003).

Zircon grains from western-domain plutonic assemblages within 100 m of the Rand fault exhibit oscillatory zoning, ca. 135 Ma cores mantled by CL-homogenous, ca. 103–98 Ma rims with elevated U concentrations and U-Th ratios (Chapman et al., 2012). Oxygen isotope ratios were determined (see the Data Repository) from a subset of schist and upper-plate zircons also studied by U-Pb geochronology (Fig. 3). Measured δ18O from schist and upper-plate zircon cores average 5.61%±0.33% and 5.37%±0.20%, respectively. Values of δ18O from recrystallized domains in the same grains yield a weighted mean of 7.20%±0.46% (schist) and 6.96%±0.63% (upper plate).

UPPER PLATE ISOTOPIC MODIFICATION

The abundance of mid- to Late Cretaceous detrital zircon grains reported here is consistent with previous interpretations (Grove et al., 2003; Jacobson et al., 2011) that the sedimentary protoliths of the San Emigdio Schist were first-cycle clastic deposits sourced from the western to central SNB. Throughout the schist section, the youngest demonstrably detrital grain clusters are identical in age (ca. 100 Ma), within analytical error (Fig. 2). The recrystallization of zircon between ca. 99 and 91 Ma within ~100 m of the Rand fault is likely due to emplacement of this structurally highest material beneath hot (680–790 °C; Pickett and Saleeby, 1993; Chapman et al., 2011) upper-plate rocks. By this interpretation, the depositional age of the structurally highest portions of the San Emigdio Schist is bracketed to the time interval between the youngest detrital U-Pb zircon ages (ca. 101 Ma) and the timing of peak metamorphism (ca. 99–91 Ma).

Zircon core δ18O values of 5.3‰±0.3‰ in both the San Emigdio Schist and upper-plate plutonic assemblages suggest limited input of supracrustal material during igneous crystallization (e.g., Lackey et al., 2005). Values of δ18O measured from recrystallized domains in upper-plate and schist zircon are ~1.5‰ higher than those of oscillatory-zoned regions in the same grains, suggesting that zircon recrystallization occurred in the presence of an isotopically heavy melt and/or aqueous fluid phase. This mobile phase was at least in part schist derived, based on evidence for isotopic veining, partial melting, and devolatilization associated with prograde metamorphism (Chapman et al., 2011). However, schist whole-rock (WR) δ18O values of 9.9‰–19.5‰ (Ross, 1989; Miller et al., 1996) are significantly higher than zircon rim values of 7.20‰±0.46‰, suggesting that mixing of schist-derived mobile phases with those with relatively low δ18O, such as unaltered mid-oceanic-ridge basalt may have taken place.

Elevated upper-plate zircon (Zr) δ18O values are spatially and temporally related to schist emplacement. Lackey et al. (2005) reported δ18OZr values of 7.8‰±0.7‰ from deeply exhumed ca. 83–117 Ma plutonic rocks of the southernmost SNB, and lower values of 6.1‰±0.9‰ from shallower-level assemblages of similar age and composition from the central SNB. Furthermore, Lackey et al. (2005) noted an increase in δ18OZr from ~7.4‰ to 8.3‰ at ca. 100 Ma in both eastern- and western-domain plutons, consistent with our observation of young (96–105 Ma) overgrowths with elevated δ18O on old (ca. 135 Ma) upper-plate zircon cores, and attribute this change to a greater supracrustal input with time. Assimilation of high-δ18O metamorphic framework rocks may account for localized contamination of plutons in the southernmost SNB, but cannot explain the pervasive shift toward higher δ18OZr at ca. 100 Ma. We propose that partial melting and/or devolatilization of the earliest-formed San Emigdio Schist at ca. 100 Ma led to metamorphism and isotopic contamination of western-domain upper-plate plutonic assemblages (Fig. 4). Emplacement of Late Cretaceous eastern-domain isotopically anomalous plutons younger than ca. 100 Ma are likewise explained by the model discussed below.

RELATION OF SCHIST UNDERPLATING TO VOLUMINOUS ARC MAGMATISM

Our age constraints indicate that the San Emigdio Schist was subducted to 30–35 km depth (Chapman et al., 2011) between 100 and 90 Ma. Therefore, it is likely that subduction accretion assemblages were present beneath
the southern SNB–Salinia–Mojave Desert region during emplacement of eastern-domain ca. 92–85 Ma S-type granitoids (Fig. 1). Plutons within this belt were likely derived from a source rich in immature clastic sediments, based on elevated $\delta^{18}O_{\text{w}}$ (10.6‰ ± 1.6‰) and initial $^{87}\text{Sr}/^{86}\text{Sr}$ (0.7077 ± 0.0011) and negative ε_{Nd} (–6.0 ± 2.2; Ross, 1989; Miller et al., 1996; Kistler et al., 2003). These isotopic relations and the paucity of metasedimentary rocks in these plutons preclude regional-scale assimilation of these assemblages as the source for this cryptic imprint.

Instead, we suggest that the San Emigdio and related schists were emplaced into the melting, assimilation, storage, and homogenization (MASH; Hildreth and Mooar, 1988) zone of the Sierran arc during slab flattening. Partial melting in the reanimated schist is hypothesized to have taken place within the magmatic source region to produce S-type granitoids in the eastern domain (Fig. 4). The emplacement of S-type granitoids in the southernmost SNB and adjacent areas occurred during eastward arc migration and at the peak of a ca. 100–85 Ma high-magmatic-fluid event (Ducau, 2001). Magmatic flare-ups are thought to be triggered by supracrustal input, either by subduction erosion from the trench side or retroarc thrusting from the foreland (Ducea, 2001; Ducea and Barton, 2007). Ducea (2001) invoked east-vergent thrusting of the arc over North American continental lithosphere to explain magmatic flare-ups for the entire length of the SNB. This argument is bolstered by 100–85 Ma plutons north of ~36°N with $\delta^{18}O_{\text{w}}$ values of ~6.5‰ at Sr, ~0.706–0.707 (Kistler, 1990; Lackey et al., 2008). However, south of ~36°N, $\delta^{18}O_{\text{w}}$ values are ~1.7‰ higher at similar Sr (Saleeby et al., 1987; Kistler, 1990; Pickett and Saleeby, 1994; Miller et al., 1996; Lackey et al., 2005), reflecting a higher proportion of supracrustal material to crystalline basement as a source component. Furthermore, there is little evidence for major Late Cretaceous deformation along the Cordilleran retroarc thrust belt south of ~36°N (e.g., DeCelles, 2004) and this latitude corresponds to the inferred northern limit of shallow subduction (Saleeby, 2003). Therefore, 100–85 Ma high-flux magmatism must be related to fundamentally different processes north (retroarc thrusting) and south (shallow subduction and dehydration melting of underplated schist) of ~36°N.

Arc magmatism ceased throughout the SNB between ca. 80 and 85 Ma (e.g., Chen and Moore, 1982). Shallow subduction and the removal of mantle lithosphere from beneath the southern SNB–Salinia–Mojave Desert region cannot account for the shutoff of magmatism in the greater SNB, where the mantle wedge was left intact (Saleeby et al., 2003). Ducea (2001) suggested that the mantle lithosphere and lower crust of the central and northern SNB became melt drained and infertile following Late Cretaceous retroarc thrusting and associated magmatism. This study suggests, however, that the cessation of magmatism south of ~36°N must have been related to a different process. A hybrid model of melt suppression due to disruption of asthenospheric circulation patterns by shallow subduction (e.g., Barazangi and Isacks, 1976) in the southern SNB and concomitant melt depletion of the retroarc source region in the central and northern SNB provides one explanation for the cessation of magmatism throughout the greater SNB between ca. 80 and 85 Ma. Alternatively, arc shutoff may simply be related to large-scale disruption of asthenospheric circulation patterns by shallow subduction in the southern SNB and adjacent areas (Saleeby, 2003).

POSSIBLE ANALOGS

The isotopic and structural relations exhibited by Late Cretaceous granitoids in the southern SNB are strikingly similar to those of the ca. 98–92 Ma La Posta plutonic suite in the northernmost Peninsular Ranges batholith. Likewise, granitoids with Sr, >0.708, $\delta^{18}O_{\text{w}}$, >8.6‰, and ε_{Nd}, <–10 of the ca. 72–86 Ma Josephine Mountain intrusion of the San Gabriel Mountains (Fig. 1; Barth et al., 1995) overlap in age with the youngest zircons (ca. 79–82 Ma) at high structural levels of the underlying Pelona schist (Grove et al., 2003), suggesting a possible schist source component for the intrusion.

Shallow subduction of the Cocos plate beneath central Mexico may be the best modern analog to the model presented in Figure 4. Unlike other modern examples of shallow subduction, arc magmatism is still active above the downgoing Cocos plate (e.g., Gómez-Tuena et al., 2007). The Cocos plate underthrusts the base of the crust horizontally at ~50 km, where a thin (~10 km) ultralow-velocity layer intervenes (Pérez-Campos et al., 2008). This layer is thought to comprise a mixture of hydrated mantle wedge, altered oceanic crust, and tectonically eroded forearc material (Keppie et al., 2012). Therefore, it is conceivable that incorporation of forearc material at the base of the arc facilitated andesitic volcanism above the Cocos plate.

SUMMARY AND OUTLOOK

Combined zircon U-Pb and oxygen isotopic data lead us to hypothesize that subduction accretion assemblages may be emplaced into continental arc source regimes during slab shallowing, leading to brief (<10 m.y.) episodes of high-flux magmatism. Further evaluation of this hypothesis can come from geochronologic, geochemical, and isotopic analysis of upper-plate and lower-plate rocks in exhumed shallow subduction systems (e.g., the North Cascades crystalline core, Washington; Matzel et al., 2004) or from geochemical and/or geophysical investigation of modern systems.

ACKNOWLEDGMENTS

This research was supported by National Science Foundation grant EAR-0739071 awarded to Saleeby. This is Caltech Tectonics Observatory contribution number 222. We thank Yunbin Guan for analytical assistance; Rita Economos, Sue Kay, Sarah Roeseke, and Luigi Solari for insightful reviews; Rónadh Cox and Sandra Wyld for editorial handling; and Paul Asimow, Carl Jacobson, and Steven Kidder for discussions.

REFERENCES CITED

Barth, A.P., Wooden, J.L., Grove, M., Jacobson, C.E., and Pedrick, N.J., 2003, U-Pb zircon geochronology of rocks in the Salinas Valley re-