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[11 New apatite and zircon (U-Th)/He ages from the Fiordland region of New Zealand’s South Island
expand on earlier results and provide new constraints on patterns of Late Cenozoic exhumation and
cooling across this region. Zircon (U-Th)/He cooling ages, in combination with increased density of apatite
ages, show that in addition to a gradual northward dccrease in cooling ages that was scen during an carlier
phase of this study, there is also a trend toward younger cooling ages to the cast. Distinct breaks in cooling
age patterns on southwestern Fiordland appear to be correlated to the location of previously mapped faults.
The northward decrease in ages may reflect asynchronous cooling related to migration in the locus of
exhumation driven by subduction initiation, or it may reflect synchronous regional exhumation that
exposed different structural levels across Fiordland, or some combination of these effects. In either case,
differential exhumation accommodated by major and minor faults that dissect Fiordland basement rocks
apparently played an important role in producing the resulting age patterns.
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1. Introduction across the adjacent segment of the Pacific-

Australian plate boundary [House et al., 2002;
[2] Late Cenozoic exhumation of the Fiordland  Walcort, 1998]. Low temperature thermochrono-
region of New Zealand's South Island temporally  metric data (apatite (U-Th)/He and fission track
coincides with the timing of increased convergence  ages) show a more or less continuous northward

Copyright 2005 by the American Geophysical Union 1of13



~ Geochemist
'Geophysics rYGS
" Geosystems

HOUSE ET AL.! CENOZOIC EXHUMATION PATTERNS

10.1029/2005GC000968

Pacific Plate

Fiordland

Doubtful Sound

Alpine Fault

nyI'-d .I_I:'Euﬂ_-Zone

Ho

45° S—

46° 8 —

Western Fiordland Belt

Central Fiordland Belt

Eastern Fiordland Belt

Du&la Shear zones
_ -

[ Westemn Fiordland Orthogneiss
[T Other Cretaceous Orthogneiss

[ Paleozoic metasediments & plutonic rocks
Southwestern Fiordland Block
I Paleozoic metasediments & plutonic rocks

[[] Triassic-Early Cretaceous plutonic & volcanic rocks
Early Cretaceous plutonic rocks

168[’ E

Figure 1.

decrease in age that has been interpreted to reflect
the coincident migration of the locus of bedrock
uplift and exhumation related to subduction initia-
tion offshore to the west [House et al., 2002].
Persistence of a large positive Bouguer gravity
anomaly centered on the region of most recent
bedrock uplift attests to the isostatic disequilibrium
of Fiordland and provides an additional link to
subduction initiation as the cause of the exhuma-
tion [Toth and Gurnis, 1998].

Geologic map and plate setting of Fiordland [Bradshaw, 1990; Muir et al., 1998].

[3] We report here new apatite and zircon (U-Th)/
He cooling ages from Fiordland that expand the
scope of our original study and provide a more
complete picture of how Late Cenozoic exhuma-
tion is distributed across Fiordland. Our results
confirm previously identified patterns of cooling
ages, but also indicate that southwest Fiordland has
a cooling history that is distinct from that of
regions to the north and northeast. Zircon (U-Th)/
He cooling ages-the first from this region-allow us
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to better constrain spatial variations in the timing
of the onset of Late Cenozoic exhumation and
provide limits on the total amount of exhumation.

2. Tectonic Setting and Geology of
Fiordland

[4] Fiordland, southwestern South Island, New
Zealand, stands as a topographically elevated
region situated above the leading edge of the
over-riding plate at the highly oblique Pacific-
Australia nascent subduction zone (Figure 1). The
subducting Australian plate is seismically active
and imaged as a steeply-dipping high seismic
velocity zone to depths of about 150 km beneath
Fiordland [Eberhart-Phillips and Reyners, 2001].
The slab is highly curved in its upper part and
the surface trace of the subduction interface lies
140 km northwest of the Fiordland coast. Surficial
deformation offshore is partitioned into shortening
of the Fiordland Basin accretionary wedge, and
dextral strike-slip displacement on the Alpine Fault
[Barnes et al., 2001]. Shortening of the Pacific
plate to the east of the Alpine Fault is distributed
across a zone (1250 km wide in southern South
Island that encompasses Fiordland.

[s] A complex zone of faulting in the western Te
Anau Basin that continues northward as the Holly-
ford Fault System [Norris and Turnbull, 1993;
Oliver and Coggon, 1979] defines the eastern limit
of plutonic and high-grade metamorphic basement
rock that underlie Fiordland (Figure 1). North of
Dusky Sound, western and central Fiordland con-
tain a wide range of Cretaceous amphibolite and
granulite facies metamorphic rocks, including the
Western Fiordland Orthogneiss that are juxtaposed
with a belt of low grade Triassic-Early Cretaceous
metaplutonic and metavolcanic rocks (Eastern
Fiordland Belt, Median Tectonic Zone, or Median
Batholith) [Bradshaw, 1989, 1990; Clarke et
al., 2000; Daczko et al., 2001; Kamp,
1986; Kimbrough et al., 1994; Mortimer et al.,
1999; Muir et al., 1998; Oliver and Coggon, 1979,
Tulloch, 1983; Ward, 1984].

[6] The metamorphic grade and exposure level of
basement rocks decreases significantly in south-
western Fiordland, to the south of the Dusky Fault
[Cooper, 1989; Ward, 1984]. Basement rocks south
of Dusky Sound can be roughly divided into two
terranes: the Fanny terrane on the west consists of
low- to medium-grade quartzites and argillites,
while the Goodyear terrane on the cast is composed
of 0350-370 Ma plutonic rocks that intrude

amphibolite facies metapelites and metavolcanics
[Muir et al., 1998; Tulloch, 1983; Ward, 1984].

|7] Patterns of Cenozoic exhumation of Fiordland
have changed since initiation of the Australia-
Pacific plate boundary through New Zealand in
Eocene time [Ward, 1984; Wood et al., 1996]. A
record of the changing paleogeography is partly
preserved in remanent adjacent sedimentary basins
[Norris and Turnbull, 1993; Turnbull et al., 1993].
Middle and Late Eocene conglomerates are mainly
derived from eastern Fiordland and are interpreted
as proximal deposits to normal faults. Normal
faults with clearly imaged Middle Eocene-Early
Oligocene growth strata are imaged by seismic
reflection data to the south and east of Fiordland
[Norris et al., 1978; Turnbull and Uruski, 1995;
Turnbull et al., 1993]. Significant paleogeographic
changes in Late Oligocene and Early Miocene
times adjacent to Fiordland, combined with evi-
dence for the onset of folding in the Southern Alps,
has led previous workers to hypothesize that this is
when a change to locally transpressive strike-slip
motion occurred and the Alpine Fault initially
formed [Kamp, 1986; Norris and Turnbull, 1993;
Turnbull et al., 1993]. More recent analysis of
seafloor-spreading in the southwest Pacific con-
firms that plate motion through New Zealand
changed to dominantly strike-slip and significantly
accelerated at 026 Ma [Cande et al., 2000].
Previous analyses of the geometry of the Fiordland
subduction zone have suggested that initial con-
vergence occurred in either Early, Middle, or Late
Miocene times [Davey and Smith, 1983; House et
al., 2002; Lebrun et al., 2003; Walcott, 1998].
Convergence since [ 6 Ma resulted in widespread
tectonic uplift of Fiordland and increased trans-
pression along the Alpine Fault in central South
Island resulted in substantial topographic growth of
the Southern Alps [Batt et al., 2004; Batt and
Braun, 1999; Sutherland, 1996; Tippett and Kamp,
1993; Walcott, 1998].

3. Exhumation and Uplift of Fiordland

|s] Apart from a restricted coastal strip in the
vicinity of Milford Sound, all rocks that have been
analyzed thermochronometrically from Fiordland
cooled through temperatures of 250—350LC during
Cretaceous time [Gibson, 1982; Gibson et al.,
1988; Kimbrough et al., 1994; Marks and Tikku,
2001; Muir et al., 1998; Nathan et al., 2000],
K-feldspar *’Ar/*’Ar and zircon fission track data
from around Dusky Sound show that exposures
south of the Dusky Fault cooled through temper-
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Figure 2. Location map of Fiordland showing the positions of newly dated samples (red and white circles) and
samples originally reported by House et al. [2002] (green squares). White circles indicate Manapouri tunnel samples.
Also shown is the Fiordland gravity anomaly (Bouguer onshore and Free-Air offshore [Davey and Smith, 1983]). The
three large red boxes indicate the locations of Figures 3a, 3b, and 3¢ as labeled. Figures 2 and 3 are both shown using
the New Zealand Map Grid, drawn on the New Zealand Map Grid Projection.

atures of 0200C during Cretaccous time while
regions immediately to the north cooled much
later (as late as (120 Ma) [Davids, 1999]. Apatite
fission track and (U-Th)/He cooling ages show
that the southern Dusky Sound and Hauroko
regions cooled ecarlier and more slowly than
regions to the north, although extreme ranges
in cooling age are not detected using these low
temperature techniques [House et al., 2002]. The
apatite fission track and (U-Th)/He data indicate
a distinct acceleration in exhumation in southern

Fiordland at 012 Ma, while In cooling ages in
central and northern Fiordland are up to 5—7 m.y.
younger. However, the spatial distribution of
these ages is not sufficient to determine how

the transition from older to younger ages is
distributed throughout Fiordland.

4. (U-Th)/He Thermochronometry

[s] Provided that exhumation removes at least 2—
3 km of material, then it may be detected using low
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Table 1. Apatite Ages for Fiordland Samples
Ave. Cor.
Fasting/ Age Age, [U], [Th], [*He],
Sample Northing EL, m (2s)" Ma ppm ppm U/Th nmollg F, R,nmm L, nm
George Sound and North
East George Sound
MHO02-03  E2076514/N5562358 1160  2.7(04) 29 31.1 3.8 813 0407 082 77 300
2.7 36.5 3.8 9.62 0461 083 83 326
2.6 383 42 912 0466 0.83 89 240
MHO02-76  E2072087/N5564827 0 1.9(0.3) 1.9 75.5 1587 048 0911  0.78 63 343
22 17.8 182 098 0210 0.79 66 257
1.5 46.8 920  0.51 0428  0.75 54 257
Mt. Mitchelson
MHO02-33 E2106633/N5587489 1201 1.4(0.2) 1.6 217 711 030 0266 0.80 69 343
1.4 8.6 334 026 0100 0.79 74 223
1.3 7.7 334 0.23 0.084  0.76 66 194
West George Sound
MHO02-52 E2067402/N5581449 1075 3.6(0.4) 3.6 127 412 031 0.383  0.87 120 389
38 19.1 719 027 0598  0.80 69 377
2.7 244 804 030 0520 0.82 80 377
4.1 203 416 049 0542  0.80 69 377
MHO02-82 E2065210/N5578556 0 2.6(0.3) 23 25 3.0 0.82 0030 0.77 60 257
2.1 4.7 74 0.64 0060 0.82 80 309
35 1.7 1.7 0.99  0.033 0.83 89 274
25 33 31 .06 0.047 084 91 317
Doubtful Sound
North of Wilmot Pass Region
MHO02-14  E2066811/N5529181 1122 5.1(0.8) 52 25.8 61.1 042 0881 0.7 60 300
5.0 38 2.1 1.81 0.092 0.78 74 154
MHO02-17 E2057874/N5509255 1414  55(09) 43 30.6 2.8 10.79  0.540 0.74 51 208
6.7 30.8 3.2 9.71 0792  0.69 43 173
East-Wilmot Pass Region
MHO02-19  E2057436/N5506176 1188  3.5(0.6) 38 342 1.0 3468 0534 074 51 240
3.1 54.0 104 519 0723  0.77 63 171
12 0.1 0.1 0.73 0.001  0.73 51 194
MHO02-20  E2062074/N5506700 1212 2.6(0.4) 29 43 2.8 1.53 0.054  0.70 46 146
23 43 34 1.27  0.041  0.63 37 137
MHO02-21 E2062440/N5507114 1501 4.2(0.6) 35 24.7 17.5 1.42 0419 077 60 251
4.6 31.9 9.3 344 0625 0.73 51 189
4.5 429 255 1.68  0.958  0.80 69 291
MHO02-22 E2062373/N5505909 850 2.8(04) 26 2.1 0.8 2.73 0.026  0.81 80 229
33 7.8 3.5 2.21 0.125  0.80 69 309
2.6 7.5 3.7 200  0.093 0.80 69 257
Manapouri Tunnel
P68345° E2055382/N5509157 10 2.8(0.5) 2.7 57.1 4.6 1252  0.618 0.72 46 182
29 358 5.2 6.84 0404 069 42 175
P68686° E2060741/N5506344 10 1.6(0.3) 1.6 9.6 16.3 059  0.087 0.73 52 191
15 10.5 186  0.56 0.088 0.74 53 216
P68693° E2060805/N5506310 10 1.6(0.3) 1.6 91.1 51.1 1.78  0.632  0.69 43 171
1.6 2146 905 2.37 1499  0.71 46 178
P68719° E2062219/N5505568 10 1.8(0.4) 1.8 6.0 7.3 0.83 0.057 0.75 56 212
West-Secretary Island
MHO02-56  E2035708/N5531718 1211 4.6(0.5) 3.7 1.0 0.3 315  0.016 0.75 54 223
58 23 0.6 4.14 0.059 0.78 69 189
4.6 3.6 6.3 0.58 0.099 0.78 66 231
43 0.9 1.8 0.53 0.024  0.76 57 240
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Table 1. (continued)

Ave. Cor.
Easting/ Age Age, [U], [Th], [*He],
Sample Northing El, m (2s)° Ma ppm ppm U/Th nmollg F R,nm L, m
Long Sound
West-Wednesday Pk.
MHO02-31 E2034607/N5433996 1136  184(2.5) 169 112 0.6 1756  0.845 0.8l 71 283
172 228 1.5 1490 1716  0.79 69 223
209 158 1.1 1433 1391 0.76 57 223
MHO02-114  E2025470/N5441544 0 11.9(1.6) 123 16.4 57.9 0.28 1.544  0.77 60 309
10.7 197 83.9 0.24 1.737 075 57 274
126 156 439 0.36 1.438  0.81 86 206
East
MHO02-110  E2036014/N5454915 0 6.5(0.9) 6.7 133.0 8.1 1650 3.618 0.74 54 171
56 2105 137 1534 4551  0.70 43 240
73 1841 210 8.77 5334  0.71 46 206
MHO02-112  E2029753/N5449760 0 11.2(1.5) 11.8  61.6 11.5 5.35 3268 0.79 69 240
11.0 778 13.8 5.63 3.567 0.74 54 171
11.0 592 12.0 493 2713 0.74 57 137
Central
MHO02-113  E2027952/N5446749 0 12.1(1.3) 138 203 41.1 0.49 1.712  0.76 57 291
8.9 16.2 28.7 0.56 0913  0.83 91 229
170 246 466 0.53 2567 0.78 63 291
92 134 245 0.55 0815 0385 106 257
11.5 188 356 0.53 1.295  0.76 60 240
Resolution Island
Clerk Pk.(East)
MHO02-61 E2018532/N5483329 1083 9.8(1.5) 102 7.7 93.7 0.08 1.244  0.75 63 206
9.1 24 473 0.05 0494 0.74 61 189
10.2 105 1172 0.09 1.652  0.78 69 291
Dusky Sound (West)
MHO02-103  E2010127/N5481825 0 14827y 145 122 1.3 9.23 0.822 083 86 291
15.0 9.2 1.9 493 0595  0.76 60 171
Wet Jacket-East
MHO02-64 E2042014/N5486327 1066 5.0(0.5) 4.5 3.0 11.1 0.33 0119  0.78 69 223
5.1 2.4 9.6 0.25 0.107  0.83 86 343
54 22 9.9 0.23 0.099 0.74 51 309
4.7 1.4 3.5 0.39 0.045  0.80 74 257
53 3.7 8.5 0.43 0.121  0.73 51 257
MHO02-98 E2037825/N5491278 0 3.8(0.5) 38 492 161.1 031 1.325 0.74 54 240
3.7 48.5 1573 031 1.279  0.75 54 274
39 549 1758 031 1.511 075 60 183
Edwardson Sound
East
MHO02-62 E2017490/N5464754 1033 12.5(2.1) 119 8.3 4.0 2.05 0458  0.77 57 274
132 104 4.9 2.12 0.676  0.82 80 291
MHO02-106  E2018023/N5458693 0 10,0(1.4)  11.8 38 43 0.89 0.237  0.77 63 223
8.0 38.1 9.7 3.91 1.283  0.73 51 189
104 351 7.8 4.50 1.603  0.77 57 300
West
MHO02-108  E2013139/N5450969 0 14.1(2.3)y 140 15.1 10.2 1.48 0.967 0.73 49 223
14.2 11.6 19.5 0.59 0928 0.74 54 214
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temperature thermochronometry. Given a nominal
geothermal gradient in the 20—30C/km range and
a 5IC surface temperature, exhumation from
depths of 02—3 km ought to be accompanied by
cooling from above temperatures 070, and so
should be recorded by (U-Th)/He apatite thermo-
chronometry (AHE), a technique with a closure
temperature of O70IC [Farley, 2000]. In actual
fact, the transition between quantitative loss and
retention of helium in apatite occurs over a thermal
window of 140—70C the helium partial retention
zone, similar to the apatite fission track partial
annealing zone. The (U-Th)/He closure tempera-
ture, taken to be the temperature at the base of the
helium partial annealing zone, scales with apatite
grain size (larger grain sizes have higher closure
temperatures). Although the grain-size effect is
slight (from 75—150 micron prism diameter, the
closure temperature varies by just 6[C) it can be
used to advantage in samples with a range of grain
sizes. Thus an apatite (U-Th)/He age provides an
additional information on the time-temperature
history of a specific sample, permitting documen-
tation of exhumational histories from extremely
shallow levels in the Earth’s crust.

[10] The low temperature cooling history of a rock
can be expanded more by using (U-Th)/He zircon
thermochronometry (ZHE) with a closure temper-
ature of 1180 = 20T (possibly corresponding to
depths of 6—9 km given the assumptions above)
[Reiners and Farley, 1999].

[11] Our sample strategy was devised to further
delineate the northward decrease in cooling ages
observed in our pilot study as well as to investigate
whether any significant cast-west variations in
cooling ages exist, and how they might be accom-
modated. We focused on 4 gencral regions
(Figure 2): (1) Long and Edwardson Sounds;
(2) Wet Jacket Arm (including Resolution Island);
(3) Doubtful Sound (including Wilmot Pass-
Secretary Island); and (4) George Sound. Samples
were collected from seca level and from clevations
centered on a reference datum of 1100 £ 100 m
above sea level, as well as one additional sample

from O 1500 m. Comparison of spatial variations in
cooling ages for sea level samples should further
delineate patterns of differential exhumation iden-
tified in our first study and allow us to extend this
comparison into southern Fiordland. Cooling ages
from the reference elevation horizon can also be
compared toward the same end and can be used in
combination with nearby sea level samples to
evaluate first order variations in exhumation rates
across the region by comparing the age-elevation
relationships that result.

[12] AHE and ZHE ages were obtained at the
Caltech Noble Gas Laboratory. Apatites were an-
alyzed using methods described by House and
others [House et al., 2000], while zircons were
analyzed following Farley and others [Farley et al.,
2002]. Analytical details and results are shown in
Tables 1 and 2.

5. Apatite (U-Th)/He Results

5.1. Southwest Fiordland: Long,
Edwardson, and Dusky Sounds, Wet
Jacket Arm

[13] AHE ages were obtained for 6 sea level
samples along Long and Edwardson Sounds/
Chalky Inlet, as well as from elevation (1136 and
1033 m, respectively) in southwest Fiordland
(Figures 2 and 3a). Sea level samples were also
collected from western Resolution Island and the
head of Wet Jacket Arm (samples MHO02-103 and
MHO02-98, respectively), and at clevation from
castern Resolution Island (MHO02-61, 1083 m)
and at the head of Wet Jacket Arm (MHO02-64,
1066 m).

[14] AHE ages for sca level samples from the
heads of Wet Jacket Arm and Long Sound, respec-
tively, are 3.8 = 0.5 Ma and 6.5 + 0.9 Ma
(Figure 4a), while the rest of the sea level samples
from this region yield older ages (from 10.0 +
1.4 Ma in central Edwardson Sound to 14.8 +
2.7 Ma on western Resolution Island). Except for
the significantly younger samples at the heads of

Notes to Table 1:

“Krror is the 2 sigma standard error [Farley et al., 2001]: 0.117*2*(average age)/sqrt (N), where N is the number of replicates and 0.117 is the
average standard deviation of the entire data set. Easting and Northing refer to New Zealand map grid coordinates; elevation is with respect to sea
level. F, is computed from grain size measurements (radius, R, and length, L) following the method of Farley et al. [1996]. All samples consist of
single crystals and were outgassed using the Nd-YAG approach of House et al. [2000]. Each age discussed in the text is the average computed from
multiple single crystal aliquots of apatite. The average grain-radius of the apatite samples analyzed is 67 + 14 microns, corresponding (o a closure
temperature of 770, assuming a linear cooling rate of 100C/m.y. [Farley et al., 1996].

Sarnples collected fromn Manapouri Tunnel. All sample locations are reported using coordinates in meters inn terms of the New Zealand Geodetic

Datum of 1949,
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Table 2. Zircon Helium Ages®

Age,  [4He], [U, [Th), Mass, Ave. Age,”
Sample Subsample Ma (nmol)/g  ppm ppm U/Th ng F, L,nm R, nm Ma
Long Sound
MHO02-31 c 115.1 27.469 601.5 16.5 36.56 3.2 0.72 12 6.2 112.2(25.4)
d 109.3 21.385 4502 111.8 4.03 4.4 0.75 12 7.2
MHO02-113 a 97.4 19.041 3712 186.9 1.99 313 0.86 31 12 89.6(16.6)
b 83.0 18.047 407.0 2374 1.71 31.3 0.86 31 12
c 88.4 24.141 5303 1850 2.87 413 0.87 30 14
Wet Jacket
MHO02-98 a 9.62 0.309 58.1 40.8 1.42 413 0.87 30 14 13.6(3.1)
c 17.5 0.459 48.2 40.7 1.18 26.7 0.84 38 10
MHO02-64 a 16.3 0.345 3238 7731 0.42 49.8 0.87 42 13 13.9(2.2)
b 12.4 0.892 118.0  193.1 0.61 633 0.88 46 14
c 13.1 0.217 24 .8 47.6 0.52 13.9 0.81 27.5 8.5
d 13.7 0.590 65.7 133.3 0.49 26.3 0.85 31 11
George Sound
MHO02-03 b 10.8 2.565 5099 1794 2.84 10.4 0.79  23.25 8 11.2(2.1)
c 8.6 1.534 4002 106.5 3.76 6.7 0.77 17 7.5
d 14.3 3.100 452.5 169.8 2.66 13.1 0.81 23 9
MHO02-76 a 4.1 0.225 98.8 93.5 1.06 204 0.84 24 11 4.3(1.0)
b 4.5 0.164 67.8 57.3 1.19 168  0.83 24 10

“Sample locations are shown in Table 1. Zircons are all cuhedral and approximately equidimensional (R, O Ry). F, correction computed
following Farley et al. [1996]. All samples consist of single crystals and were outgassed using the Nd-YAG approach of House et al. [2000] and
were dissolved for U-Th analysis using the method of Farley et al. [2002].

P Error is the 2 sigma standard error computed following the method of Farley et al. [2001]: 0.32*2*(average age)/sqrt (N), where N is the
number of replicates and 0.32 is the average standard deviation of the entire data sel. Each age discussed in the text is the average computed from
multiple single crystal aliquots of zircon. All sample locations are reported using coordinates in meters in terms of the New Zealand Geodetic Datum

of 1949.

Wet Jacket and Long Sound, there is no systematic
relationship between cooling age and position
along any of the sounds.

[15] AHE cooling ages from the [J 1100 m samples
are generally older than adjacent sea level samples
and show the same jump to younger ages at the
castern limit of Wet Jacket Arm: the AHE age of
MHO02-64 at the head of Wet Jacket Arm is 5.0
0.5 Ma, while ages to the southwest are
considerably older (MHO2-31 is 184 + 2.5 Ma
and MHO02-62 is 12.5 + 2.1 Ma). One sample
(MHO02-61, from castern Resolution Island) is
younger than the closest sea level sample (9.8 +
1.5 Ma), however.

5.2. Central Fiordland: Wilmot Pass to
Outer Doubtful Sound

[16] Eleven new samples from the Doubtful Sound
region (nine from the Wilmot Pass region including
the Manapouri Tunnel, one from Secretary Island,
and onc from Fowler Pass to the north) were
analyzed (Figures 2 and 3b). The new AHE ages
from central Fiordland are similar in range to those
from Doubtful Sound originally reported by House

et al. [2002]. Samples from the Wilmot Pass area
adjacent to the head of Doubtful Sound range in
elevation from 10—1501 m (including several from
within a tunnel at the edge of Lake Manapouri,
Table 1) and generally exhibit a positive correlation
with elevation (ranging from 1.0 £0.5 Mato 4.2 +
0.6 Ma). A single sample from Secretary Island
(MHO02-56, 1211 m) yielded an age of 4.6 0.5 Ma.
This sample is 0 1 m.y. older than the age observed
at a similar elevation at Wilmot Pass. Samples from
the north and east of the head of Doubtful Sound
(MHO02-14, 1122 m and MH02-17, 1414 m) are
older still (5.1 £ 0.8 Ma and 5.5 + 0.9 Ma,
respectively) than samples from comparable eleva-
tions to the west (Figure 4b).

5.3. Northern Fiordland: George Sound
Region

[17] Five samples were analyzed from the George
Sound region (Figures 2 and 3c¢): two at sea level
(MHO02-76 at the head of the sound in the east and
MHO02-82 at the mouth to the west), two at
clevation (MHO02-3 from 1160 m at the head
and MHO02-52 from 1075 m from the mouth of
the sound), and one additional sample located to
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the north of George Sound from O1100 m
elevation (MHO02-33). The AHE ages from the
sea level samples are 1.9 and 2.6 Ma, while
adjacent high elevation samples are consistently
older (2.7 and 3.6 Ma, respectively). In addition,
the ages of both sea level and 01100 m samples
at the mouth of the sound are all roughly 1 Ma
older than samples at similar elevations farther to
the east (Figure 4c). Sample MHO02-33 to the
north is considerably younger than the other
samples (1.4 + 0.2 Ma).

6. Zircon Results

[18] Zircons from a subset of samples were
analyzed in order to constrain a portion of the
higher temperature cooling history of Fiordland.
Samples were selected in order to obtain ages
from a range of elevations in locations across
central and southern Fiordland, including the head
of Wet Jacket Arm (MH02-64 and MHO02-98),
along Long Sound (MHO02-113 and MHO02-31)
and at the head of George Sound (MH02-03 and
MHO02-76). For each site, samples from sea level
and nearby at O 1100 m elevation were selected
for analysis (Table 2).

[19] In general, the ZHE cooling ages from south-
ern Fiordland are significantly older than those
from the north (Figure 5). At Long Sound, ZHE
ages range from 89.6 Ma at sea level to 01 112.2 Ma
at 1136 m, while they are significantly younger at
George Sound and Wet Jacket Arm. For example, a
single sea level sample from George Sound is
4.3 Ma compared to 11.2 Ma at 1160 m. Ages
from the head of Wet Jacket Arm are also young:
compare 13.6 Ma at sea level to 13.9 Ma at 1066 m
(Figures 3 and 5).

7. Discussion

[20] AHE ages from upper Wet Jacket Arm,
George Sound, and the Doubtful Sound region

Figure 3. Maps of sample areas: (a) southwestern
Fiordland, (b) central Fiordland, and (c¢) northern
Fiordland. Newly dated samples are shown with red
and white circles (white are for the Manapouri tunnel
samples), and those originally reported by House ef al.
[2002] are shown by green squares. New AIIE ages
(indicated by bold text) and ZHE ages (indicated by
bold text with age followed by **z”) are shown. Ages of
House et al. [2002] are shown with regular text.
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Figure 4. Apatite helium age results from Fiordland. New results are plotted together with results from House et al.
[2002]. Data from House et al. [2002] are shown with open or gray symbols. Dashed lines connect samples that are
collected from the same vicinity (for example, a sea level sample and the nearest sample from the O 1100 m reference
elevation). Plotted ages are average values computed from replicate analyses shown in Table 1. Errors are 2 sigma
standard errors computed following Farley et al. [2001] (see description in the Table 1 footnotes). (a) Ages from
south-southwest Fiordland. Data from east of the Last Cove Fault are shown with dark filled circles, while those from
the west of the Last Cove Fault are shown with light filled circles. Data of House et al. [2002] from Lake Hauroko
(open circles) and Dusky Sound (squares) are shown in gray and open symbols, corresponding to locations cast and
west of the Last Cove Fault, respectively. (b) Ages from Central Fiordland transects with data of House et al. [2002]
from Doubtful Sound (open squares) and Percy Saddle (open circles). (¢) Ages from northern Fiordland transects,
including George Sound and Mount Mitchelson (filled circles and squares, respectively), and data of House et al.
[2002] for Lake Te Anau (open triangles) and the George Sound (open circles) and Milford Sound arca (open
squares).

are consistent with previously reported results
[House et al., 2002] showing a similar trend

but is slightly younger to the north (I3-2 Ma
at George Sound). Sea level AHE ages show

toward younger cooling ages in the north. The
data indicate that cooling from temperatures of
>770C (presumably related to exhumation from
depths of 2-3 km) has occurred since 05 Ma
in central Fiordland (Wet Jacket and Wilmot),

that southwest Fiordland, which had not been
previously studied, cooled through the AHE
closure isotherm roughly 10-8 m.y. earlier than
northern and central Fiordland, respectively

(Figure 4).

10 of 13



¥ & Geochemist
e 'Geophysics TYG3
! _ Geosystems

HOUSE ET AL.! CENOZOIC EXHUMATION PATTERNS

10.1029/2005GC000968

1400 S S —
. 3 O George Sound J
1200
O ' Wet Jackel Arm 03T
WF @ Long Sound
1000 ||| 64 i Rl
-gr 300 - -
c
8 /
E It i
& 600 [ ! .
w | -
aoo || | 4
i
200 | B
i 113
0 fo o & B
76 98
200 Lol | | | 1 |
0 20 40 60 B0 100 120 140
Average ZHE Age (Ma)
Figure 5. Zircon helium age results from George

Sound, Wet Jacket Arm, and Long Sound. All ages
shown are average values computed from individual
replicates shown in Table 2; errors are 2 sigma. Dashed

lines connect samples that are adjacent to one another in
the field.

[21] In addition to the general southward increase
in AHE ages across Fiordland, there is a slight east
to west variation in AHE ages apparent at several
locations. Comparison of cooling ages from sca
level and at 01100 m in George Sound and at
Doubtful Sound shows that cooling ages to the
west are slightly older than those to the east in both
locations (Figure 4). In both areas, the exhumation
rates arc similar as indicated by the age-elevation
relationships, but relative ages differ by 01 m.y.

[22] Preservation of older AHE ages to the south
has been interpreted to reflect the northward mi-
gration of a locus of bedrock uplift and exhumation
related to subduction initiation [fHouse et al.,
2002]. However, these age patterns may also
reflect differential uplift that produced significantly
different amounts of exhumation that are responsi-
ble for the range of cooling ages that we observe.
For example, slightly older AHE ages in western
Fiordland relative to those in the cast may reflect
increased bedrock uplift (and resulting exhuma-
tion) by faults that parallel the coast, so that decper
crustal levels with younger ages arec exposed to the
cast, while concurrent (but less pronounced) bed-
rock uplift and exhumation to the west preserved
older ages in rocks that were exhumed from
shallower crustal levels. Brittle faults are wide-
spread in Fiordland and although no individual
fault need have a very large throw, the net result
may be significant., For example, if these coast

parallel faults acted as west-vergent reverse faults,
as would be expected in the overriding plate above
an active subduction zone, they would produce age
patterns like those observed.

[23] The case for fault-related differential uplift and
exhumation is stronger in southwestern Fiordland,
where AHE ages show discontinuities across at
least one major structure. The spatially localized
shift (1-5 m.y.) in ages from sea level samples
within Long and Edwardson Sounds appears to
correspond to the position of the Last Cove fault
(Figure 1). This structure, which bounds the Kakapo
granite on the east and extends northward along the
Acheron Passage (Figure 1 and Figure 2), clearly
defines a major basement terrain boundary.

[24] AHE and AFT ages that span the Dusky fault
increase gradually from north to south across this
region, no obvious break in low-temperature cool-
ing ages is apparent in the data near the fault.
However, higher temperature cooling ages from the
region (K-feldspar “’Ar/*’Ar and ZFT) reveal a
significant jump to younger ages in the north, not
only across Dusky Sound, but also across Wet
Jacket Arm [Davids, 1999]. These patterns of ages
suggest that faults underlying both Dusky Sound
and Wet Jacket arm may have accommodated
significant offsets prior to Miocene times, but have
largely been inactive or have accommodated only
minimal offset since. More information is needed
to determine the magnitude of this offset however.

[25] Cooling ages from eastern Dusky and Long
Sounds and Wet Jacket Arm are similar at a given
elevation to those from Lake Hauroko, which lies
within the median Tectonic zone to the ecast
(Figure 1). This similarity in ages among samples
from the Southwestern Fiordland block, the Cen-
tral Belt and the Median Tectonic zone suggests
that outside of the region south-southwest of the
Last Cove fault, regional variations in exhumation
across the rest of Fiordland are largely gradational
and cannot be correlated to any particular faults at
present. Nevertheless, as mentioned above, as yet
unrecognized structures may play a role in the
pattern of cooling ages that we observe in the
region.

8. Conclusion

[26] Our data show that at least some of the uplift
of Fiordland, SW New Zealand, is accommodated
by faulting within the plate. In particular, available
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mapping and our AHE ages indicate that the
exhumation history southwest of the Last Cove
fault may be partially decoupled from that to the
north and east. Elsewhere, we conclude that differ-
ential exhumation across individual faults within
Fiordland is unresolvable using our data.

[27] The general pattern of our new AHE and ZHE
cooling ages from Fiordland confirm and expand
on previous results. New data from southwest
Fiordland agree with our earlier hypothesis that
rapid exhumation in southern Fiordland initiated at
012 Ma [House et al., 2002]. Younger cooling
ages in the north may reflect either the northward
migration of the locus of onset of uplift and
exhumation related to subduction initiation, or the
onset of exhumation may have been synchronous,
but with greater exhumation rates in the north.
These alternative hypotheses can only be resolved
through analysis of a larger data set that includes
systems with a range of closure temperatures. In
light of this conclusion, further data collection,
analysis and modeling are underway to resolve
the geodynamic hypotheses that this data set has
allowed us to form.
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