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[1] The Global Positioning System (GPS) system now makes it possible to monitor
deformation of the Earth’s surface along plate boundaries with unprecedented accuracy. In
theory, the spatiotemporal evolution of slip on the plate boundary at depth, associated with
either seismic or aseismic slip, can be inferred from these measurements through some
inversion procedure based on the theory of dislocations in an elastic half-space. We
describe and test a principal component analysis-based inversion method (PCAIM), an
inversion strategy that relies on principal component analysis of the surface displacement
time series. We prove that the fault slip history can be recovered from the inversion of each
principal component. Because PCAIM does not require externally imposed temporal
filtering, it can deal with any kind of time variation of fault slip. We test the approach by
applying the technique to synthetic geodetic time series to show that a complicated slip
history combining coseismic, postseismic, and nonstationary interseismic slip can be
retrieved from this approach. PCAIM produces slip models comparable to those obtained
from standard inversion techniques with less computational complexity. We also compare
an afterslip model derived from the PCAIM inversion of postseismic displacements
following the 2005 8.6 Nias earthquake with another solution obtained from the extended
network inversion filter (ENIF). We introduce several extensions of the algorithm to allow
statistically rigorous integration of multiple data sources (e.g., both GPS and
interferometric synthetic aperture radar time series) over multiple timescales. PCAIM can
be generalized to any linear inversion algorithm.

Citation: Kositsky, A. P., and J.-P. Avouac (2010), Inverting geodetic time series with a principal component analysis-based

inversion method, J. Geophys. Res., 115, B03401, doi:10.1029/2009JB006535.

1. Introduction

[2] Faults slip in a variety of ways, such as during sudden
seismic events or as a result of aseismic creep. Fault slip
rates can therefore vary over a wide range of timescales,
from the typical 10–100 s duration of large earthquakes, to
the weeks or years duration of slow earthquakes and post-
seismic relaxation.Monitoring how fault slip varies with time
is thus key to improving our understanding of fault behavior.
Fault slip at depth results in surface deformation that can be
observed with geodetic techniques [e.g., Lisowski et al.,
1991; Segall and Davis, 1997], paleogeodetic techniques
[e.g., Taylor et al., 1987; Sieh et al., 1999], or remote sensing
techniques [e.g.,Massonnet and Feigl, 1998]. How faults slip
at depth can thus be derived indirectly through modeling of
surface deformation.
[3] Theoretical surface displacements expected from

some fault slip at depth is generally computed based on
the theory of linear elasticity [e.g., Savage, 1983; Okada,
1985; Cohen, 1999]. This formulation is linear and easily

inverted using standard algorithms. The distribution of fault
slip is generally parameterized based on some discretization
of the fault geometry. The cumulative fault slip needed to
explain displacements that have occurred between two
epochs for which geodetic data are available can then be
obtained from some least squares inversion. Because the
number of parameters generally exceeds the number of
observations, regularization constraints are generally added;
for example, the roughness of the slip distribution can be
penalized or a positivity constraint can be added. One way
to invert geodetic time series for time-dependent slip dis-
tribution thus consists in inverting the displacements mea-
sured between each two successive epochs. This method is
computationally very intensive when the number of epochs
is large, especially when nonlinear regularization criteria are
used. Furthermore, this method considers each epoch indi-
vidually, so measurement errors at different time steps are
not properly balanced. In addition, the method also requires
geodetic time series to be sampled at each site at the same
epochs, limiting the possibility of analyzing a mixed data
set which could include campaign data or interferometric
synthetic aperture radar (InSAR) data.
[4] P. Segall and colleagues proposed a variation of the

epoch-by-epoch inversion called the extended network inver-
sion filter (ENIF) [Segall and Matthews, 1997;McGuire and
Segall, 2003] specifically for GPSmeasurements. ENIF takes
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into account a stochastic description of local benchmark
motion, a nonparametric description of slip rate as a function
of time, estimation and removal of reference frame errors,
and furthermore makes use of an extended Kalman filter to
smooth out noise-related temporal variations. This approach
has been applied with great success in a number of studies
[e.g., Miyazaki et al., 2004]. However, the method has some
limitations. One is that it involves a number of hyper-
parameters necessary for the model, making it a cumbersome
tool requiring somewhat subjective choices which define the
space of possible solutions. Another is that the technique is
computationally costly. The inversion of a fairly modest data
set can take hours or days to complete on a desktop machine.
For example, the 400 epoch 10 continuous GPS (cGPS)
station data set used to infer the afterslip distribution follow-
ing theNias earthquake [Hsu et al., 2006] took approximately
2 h to run on a typical 2005 laptop. ENIF as formulated by
Segall and Matthews [1997] is also restricted to the use of
GPS time series, though it could theoretically be extended to
allow analysis of any single type of spatiotemporal data (e.g.,
InSAR data). Another limitation is that the method is not
easily applicable to the analysis of complex time series
that would include interseismic, coseismic and postseismic
deformation.
[5] In this study we describe and then test a principal

component analysis-based inversion method (PCAIM)
designed to overcome some of the aforementioned limita-
tions. This technique is easy to use and computationally
fast, allowing the user to quickly explore a suite of slip
models with different geometries and other characteristics
on a desktop computer. Note that PCAIM only deals with
the inversion for fault slip problem, and is therefore not a
substitute for ENIF since PCAIM does not incorporate any
tool to estimate and correct benchmark wobble or reference
frame errors. The corresponding MATLAB scripts are
available from the Tectonic Observatory Web site (http://
www.tectonics.caltech.edu/).
[6] Hereafter, we first describe the PCAIM approach.

Next, we test the approach by applying it to synthetic
geodetic time series and to cGPS records of postseismic
deformation following the Mw 8.6 Nias, Indonesia, earth-
quake, already analyzed by Hsu et al. [2006]. We also show
how PCAIM performs when applied to an spontaneous
aseismic transient, taking the example of the 1999 Cascadia
slow slip event, already analyzed by McGuire and Segall
[2003].

2. Principle and Implementation of PCAIM

2.1. Principle of PCAIM

[7] Let us consider a set of geodetic stations (Figure 1)
recording surface displacement over a series of time epochs.
Each station is assumed to have successfully recorded data
at all epochs. This assumption is necessary to implement the
simplest version of the method described below. In the case
of missing points or of data with different temporal sam-
pling, the technique can be adapted, as discussed later. We
place time series with identical sampling epochs in a m � n
matrix X0 where each row corresponds to the time series
from one component (east, north or vertical) at one station
and each column corresponds to all data measured at a given

epoch. We suppose that displacements are due to an un-
known, time-dependent slip distribution on a fault with
known geometry a which is discretized as set of rectangular
subpatches. Slip on each subfault is decomposed into a strike
and a dip component. We assume that the medium sur-
rounding the fault is elastic, and we represent fault slip by a
matrix Lwhere each row refers to slip (strike-slip or dip-slip)
on a given subpatch and each column to an epoch. Surface
displacements then obey

X0 ¼ GaL; ð1Þ

where Ga denotes the Green’s functions relating surface
displacements with fault slip at depth (decomposed into a
strike-slip component and a dip-slip component), given a
fault geometry a. Ga can be computed from the semi-
analytical solutions of Okada [1985] for a dislocation
embedded in an elastic homogeneous half-space, as is the
case in this study. This formulation can be substituted with
any other which would relate linearly fault slip at depth
and surface displacements. For example, one could use
Green’s functions computed for a medium with hetero-
geneous elastic properties and for any geometry of the free
surface.
[8] Determination of the time-dependent slip model

corresponding to the measurements requires inversion of
that linear system. The principal component analysis based
inversion method described in this study relies on the fol-
lowing principles:
[9] 1. The data sets can be decomposed as the sum of

components, each component being associated with a pat-
tern of surface displacement and a time function.
[10] 2. Only a small number of components is generally

necessary to explain most of the data.
[11] 3. The pattern of surface displacements associated

with each component can be inverted for some principal slip
distribution.
[12] 4. The fault slip distribution corresponding to the

original data set can be derived by linear combination of the
principal slip distributions.
[13] In practice, PCAIM flows as follows:
[14] 1. Center X0 along its rows and call the centered

matrix X (see section 2.2.1).
[15] 2. We decompose X into the product of three matrices

X = USVt such that the columns of U and V are of unit length
and S is diagonal (although S is nonsquare, it is diagonal in
the sense of all nondiagonal entries are nonzero). Such a
decomposition can be obtained through a standard Singular
Value Decomposition of X, as assumed hereafter to facilitate
the presentation (see section 2.2.2). However, any other
decomposition can be substituted for singular value decom-
position (SVD). In practice, it is advantageous to use the
weighted low-rank approximation of Srebro and Jaakkola
[2003] to allow easy handling of missing data and uncer-
tainties as discussed in section 6.
[16] 3. Determine the number r of principal components

necessary to fit the data within uncertainties. Filter X by
defining

Xr ¼ UrSrV
t
r ð2Þ
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the truncated singular value decomposition of X (see
section 2.2.3).
[17] 4. Invert the left singular vectors of Xr (columns of

Ur) for slip distributions as if they were ordinary displace-
ment vectors. We call these the principal slip distributions
of Xr and name the matrix of principal slip distributions Lr
(see section 2.2.4).

[18] 5. Sum the weighted principal slip distribution mul-
tiplied by their associated time functions over all compo-
nents ((LrSr)Vt

t). Assuming the problem is fully or
overdetermined, this results in a unique cumulative slip
state at each time up to setting an arbitrary and time-
independent ‘‘zero’’ for the slip (see section 2.2.5).
[19] It is useful to think of PCAIM based on the diagram

in Figure 2. The left-hand track in Figure 2 represents

Figure 1. (a) Cumulative slip on fault corresponding to synthetic scenario used to test principal
component analysis based inversion method (PCAIM) described in this study. Color scale shows slip
amplitude. Scenario considers a 120 km � 240 km planar fault with a dip angle of 12�, mimicking a
portion of a megathrust. (b) Cumulative slip on fault corresponding to slip model derived from PCAIM
inversion of surface displacements at 20 geodetic stations. (c) Location of geodetic stations. Vectors show
displacements corresponding to synthetic scenario (labeled ‘‘data’’) and computed from best fitting slip
model derived from PCAIM inversion (labeled ‘‘model’’). Fault slip and surface displacements are
expressed in an arbitrary unit. Boxes show locations of patches A, B, C used to compare slip evolution in
synthetic scenario and inverted slip model.
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directly translating displacement data into a slip model by
inverting the difference in surface displacement between
consecutive epochs for incremental fault slip. PCAIM
instead decomposes the displacement data into the sum of
principal components. Each of the components can be
inverted individually into a corresponding slip distribution.
It should be noticed that each individual component corre-
sponds to a linear combination of the contributions from
various sources and not to a particular, identifiable physical
source. In general, each component has no obvious physical
meaning considered alone, although the various components
might be recombined to extract the contribution of particular
sources [Kawamura and Yamaoka, 2006, 2009]. One com-
mon exception is when nearly all of the signal can be
explained by the first component, meaning the slip distribu-
tion is spatially stationary and only the amplitude of the
signal varies over time. In that case, the signal is essentially
the result of one single process that is represented by the first
component. If we use all components in PCAIM instead of
only the most statistically significant components, PCAIM
results in exactly the same model as that produced via
consecutive epoch-by-epoch inversions (the proof is given
in Appendix A).

2.2. Justification and Implementation of PCAIM

2.2.1. Preparation of X
[20] We center the original data matrix X0 by defining

X i; jð Þ ¼ X0 i; jð Þ �
Pm

k¼1 X0 i; kð Þ
m

: ð3Þ

Note that i corresponds to the spatial index and j corre-
sponds to the temporal index.
2.2.2. Principal Component Analysis of X
[21] We proceed with a principal component analysis

(PCA) of X following a standard linear algebra approach

(see any standard textbook on linear algebra for details). We
find the eigendecomposition of the spatial and temporal
covariance matrices, XX t = US2Ut and X tX = VS2Vt,
respectively. That is to say, the column vectors of U are
the eigenvectors of the spatial covariance matrix XXt, the
column vectors of V are the eigenvectors of the temporal
covariance matrix XtX, and S is a diagonal matrix with
diagonal elements equal to the positive square root of the
eigenvalues of XtX and XXt.
[22] This decomposition leads us to write

Xm�n ¼ Um�mSm�nV
t
n�n: ð4Þ

In this decomposition, the ith component is associated with
a pattern of surface displacement (represented by the ith
column of U) and a time function (represented by the ith
column of V). Components are ordered according to the
amount of variance explained in the initial geodetic data set
with the first component being the one with the most variance
explained, i.e., corresponding to the largest eigenvalue. We
assume for the moment that the singular values of X are
distinct so that the singular decomposition is unique, which is
almost always the case in practice. In fact, PCAIM still works
when there are nondistinct singular values, but due to the
resulting complications we omit the discussion for the sake of
brevity. PCA is one of the most intuitive ways to decompose
the data when we are trying to maximize the amount of
variance explained in the first i components in an unbiased
manner, but the user may deem it useful or necessary to
define U, S and V differently for different circumstances.

2.2.3. Determine the Number of Useful Components
[23] PCA leaves uncorrelated noise and deformation

localized to small groups of stations in the higher-order
components. Thus, PCA decomposition is a method to filter
data by reconstructing the time series with only the lower-

Figure 2. Diagram showing principle of PCAIM described in this study. Conventional approaches
follow left-hand track, directly translating displacement data into a slip model through some inversion
procedure based on theory of dislocations in an elastic half-space [e.g.,Okada, 1985]. PCAIM decomposes
displacement data into sum of so-called principal components. Each of components is individually modeled
and translated into a corresponding principal slip distribution model. Note that the slip model associated
with any one particular component does not have any particular physical significance. PCAIM takes
advantage of linearity of formulation that converts fault slip into surface displacement (based on theory of
linear elasticity). It makes it possible to retrieve the physical slip model by linear combination of principal
slip models derived from inversion of each component as described in text.
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order components [e.g., Savage, 1988; Savage and Svarc,
1997; Aoki and Scholz, 2003; Kawamura and Yamaoka,
2006, 2009; Fukuda et al., 2008]. That is, we approximate
the original data X, by selecting the first r components (also
called modes by certain authors [e.g., Kawamura and
Yamaoka, 2006, 2009]),

X � Xr ¼ UrSrV
t
r ; ð5Þ

where Ur is the first r columns of U, Sr is the leading
principal r � r submatrix of S, and Vr is the first r columns
of V.

[24] The number of components can be chosen based on
the reduced chi-square statistics. This allows us to deter-
mine the number of components such that the misfits
between the filtered and the original data are, on average,
of the order of magnitude of the measurement uncertainties.
In practice, this implies selecting the number of components
so that the reduced chi squared statistic, cred

2 , of X � Xr is
approximately equal to one, i.e.,

c2
red ¼

1

N � r nþ mþ 1ð Þ
Xm
i¼1

Xn
j¼1

X i; jð Þ � Xr i; jð Þð Þ2

s i; jð Þ2
� 1;

ð6Þ

Figure 3. Graphical representation of three sources that are added to constitute synthetic fault slip
model. Source 1 corresponds to updip half of fault and mimics a stick-slip behavior. It produces a 1 unit
slip event every 100 epochs. Source 2 corresponds to creep at constant rate, arbitrarily set to 10 units over
1000 epochs, on downdip portion of fault. Source 3 is a transient event with a gradual accumulation of
9 units of slip over 50 epochs. Rake is assumed constant to 90�, corresponding to purely dip-slip motion.
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where s(i, j)2 is the 1-sigma uncertainty on the i,jth data
point.
[25] The appropriate number of components to be selected

can also be chosen based on theF test [e.g.,Press et al., 2002]
which quantifies whether the additional variables introduced
with the r + 1th component is worth the variance it explains.
The criterion is based on the ratio of the difference between
the chi-square obtained before and after adding the new
component, divided by the chi-square without the additional
component and multiplied by a ratio of degrees of freedom,
i.e.,

F ¼
c2
k � c2

kþ1
c2
kþ1

N � pkþ1
pkþ1pk

; ð7Þ

where ck
2 is the c2 of the model with k components, N is the

number of data, and pk is the number of parameters in the

model with k components. This criterion has the advan-
tage that it is independent of any renormalization of the
uncertainties.

2.2.4. Determination of Principal Slip Distributions
[26] Each left-singular vector represents a spatial pattern

of displacements at the surface. We show in Appendix A
that, provided that it is valid to model the epoch-by-epoch
displacements as resulting from fault slip at depth, any
principal component found using PCA can be modeled as
surface displacements associated with some slip distribution
at depth as well.
[27] At this point we compute the principal slip distribu-

tion (li) of the ith component of Xr, ui (i.e., the ith column of
Ur) as a solution to

Gali ¼ ui: ð8Þ

Figure 4. Geodetic time series computed from synthetic fault model of Figure 3 with addition of a
randomly generated noise with uniform distribution in range [�0:15; 0:15] (blue circles), at stations 3, 6,
7, and 14. See Figure 1 for station locations. Series are constituted of 1000 samples, 1 per epoch. Red
lines show theoretical displacement curves computed from slip models derived from PCAIM inversion of
synthetic data using three components.
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These slip distributions by themselves mean that given the
data in X, li represents the ith most important slip distri-
bution at depth in terms of explaining the variance of X that
have orthogonal surface displacements at the measurement
stations.
[28] In practice, the inversion of equation (8) is often an

ill-posed problem. It is indeed fairly usual to invert displace-
ments at approximately a dozen stations (in which case m =
36 for GPS data) on a fault surface consisting of hundreds
of subpatches, each of which can accommodate slip in any
combination of two independent directions. Some constraints
are then needed to regularize the inversion. We choose a
common approach which consists in seeking ‘‘smooth’’ slip
solutions, but any other linear criteria could be used at the
user’s discretion.
[29] For each inversion, we minimize a cost function

that is a linear combination of the weighted squared misfits
between the ui and the model predictions Ga � li and the
Laplacian of the principal slip distribution,

Cost Function ¼
X3m
k¼1

Ga � li½ � kð Þ � ui kð Þð Þ2þ 1

g2
jjDlijj2; ð9Þ

where [Ga � li](k) is the model prediction corresponding to
the kth data point of the ith principal component of data and
1/g2 allows us to set the weight of the smoothness of the slip
distribution, and D = (@2/@2x) + (@2/@2y). With this smooth-
ness constraint, the solution to the least squares problem is
always unique though the solution depends on the chosen
value of g. It is worth noting that this is only one of many
possible regularization procedures to make the original ill-
posed problem solvable.
2.2.5. Determination of Final Slip Model
[30] Because we assume linear elasticity, the relationship

between fault slip at depth and surface displacements is
linear. It is thus possible to combine the slip distributions
into a model of the spatiotemporal slip evolution on the fault
using time functions defined by the PCA of X. Now that we
have inverted the left singular vectors we can proceed in the
space of slip distributions. li � si, i = 1, . . ., r define properly
scaled slip distributions. In matrix form, we have inverted
the columns of Ur from UrSrVr

t for Lr and multiplied by Sr.
[31] To find the time evolution of the slip distribution, we

need to distribute the time functions that make up Vr. This
effectively states that at epoch j, the cumulative contribution
to the total slip from the kth component is lk � sk � Vt(k, j).

2.3. Computational Complexity

[32] As demonstrated in Appendix A, in the limit of r !
rank(X), PCAIM generates the same results as if we had
performed an inversion of the displacement between epochs
i � j. At most rank(X) � min(m, n � 1) inversion(s) must be
performed to find the time-dependent slip pattern equal to
that derived from epoch-by-epoch difference inversions.
Furthermore, for any r � rank(X) � n � 1, performing

exactly r inversions allows approximately
Pr

i¼1
s2
i

var
of the

variance to be explained, where var is the total variance of

the data set (var =
Prank Xð Þ

i¼1 si
2) and si is the ith singular

value. We have only performed r inversions instead of n � 1
as is necessary for an epoch-by-epoch inversion algorithm.
Since some kind of time filtering is often imposed

Figure 5. Imposed slip history on patches A, B, and C
(green curves). See Figure 1 for location of patches. Patch A
corresponds to a region affected by both constant creep
behavior and transient event. Patch B is within domain with
only stick-slip motion. Patch C is within domain with only
steady state creep. Also shown is slip history retrieved from
principal component analysis inversion method (PCAIM)
applied to synthetic time series generated at 20 stations
shown in Figure 4, using one, two, and three principal
components.
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[e.g., Fukuda et al., 2008], the computation time is
reduced from

O SVD Xð Þð Þ þ n� 1ð ÞO K xi � xj
� �� �

ð10Þ

to

O SVD Xð Þð Þ þ rO K xi � xj
� �� �

; ð11Þ

where K is the single inversion function. In practice, we
have found r � 3 often holds in examples when n � 300.
PCAIM then allows a 1 � 10�2 reduction in the number of
inversions without significantly changing the result of the
inversion.

3. Testing PCAIM With Synthetic Data

[33] To evaluate how well this methodology performs, we
put together a synthetic scenario with a relatively complex
arbitrary fault slip history. We prescribe the fault geometry,
impose a spatiotemporally varying slip distribution, and
then generate a synthetic displacement field. We add noise
and use these data as input to the PCAIM and compare the
inferred spatiotemporally varying slip model to the original
imposed slip model.
[34] Our synthetic example is inspired by the setting of

the Sunda megathrust which is monitored by the SUGAR
cGPS experiment (http://www.tectonics.caltech.edu/
sugarkml.html). Paleogeodetic records have also been

retrieved in this area. These are records of vertical dis-
placements retrieved from the study of coral growth [e.g.,
Sieh et al., 1999; Natawidjaja et al., 2004] which typically
cover from several decades to a few centuries.
[35] For our synthetic test we consider a network of

20 sites overlaying a �15� dipping fault plane (Figure 1).
In practice, the sites might correspond to sites where paleo-
geodetic data would be available or to the location of GPS
SuGaR stations. In the first case, the typical sampling rate
would be annual and records could cover several centuries. In
the case of actual GPS data, the sampling rate would be
typically between 1 s and 1 day, and the record could extend
up to a few decades.

3.1. Data Generation

[36] We impose three sources of slip on the fault
(Figure 3). One source, that extends from the trench to
31 km depth, mimics simple stick-slip behavior (Source 1)
with a slip event every 100 epochs. The deeper portion of
the fault creeps at a constant rate (Source 2). In addition, we
add one slip transient that evolves over time (Source 3). The
imposed slip history is obtained by summing all three terms.
We calculate the resulting surface displacement field using
Okada’s [1985] formulation and sample this field at 1000
epochs at the 20 locations (Figures 3 and 4). Because of the
linearity of the equations, fault slip and displacements at the
surface are expressed in the same arbitrary length unit. We
add randomly generated, evenly distributed noise from the
interval [�0.15,0.15] unit to each data point. The standard

Figure 6. (a) Open circles show total variance (given by singular value) explained by each single
principal component. Solid circles show cumulative fractional variance when components are successively
added to reconstruct signal, starting from first component. (b) Misfit between measured and reconstructed
displacements as number of components used to reconstruct signal increases. Misfit is quantified from
reduced chi-square as defined in text (equation (6)). In that case it is necessary to take into account the first
two components for filtered data to fit original data within uncertainties on average. On the basis of F test,
the first three components are actually found significant.
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deviation of the added noise is 0.087 unit and is considered
to represent the 1-sigma uncertainty on the data.
[37] This results in 60 time series of 1000 samples each

(Figure 4). Figure 5 shows the slip history imposed at the
location of the three patches, A, B and C, the locations of
which are reported in Figure 1.

3.2. Results of the Synthetic Test

[38] Figure 6 shows the contribution to the data variance
of the various components derived from the PCA analysis
of the 60 time series. The first component dominates clearly
and explains about 99% of the data variance, and the reduced

Figure 7. (left) Slip model and (right) source time function associated with each of first three principal
components. Green arrows show surface displacements at various stations corresponding to each principal
component (i.e., corresponding column of U obtained from SVD decomposition of data matrix). Thin black
vectors show slip vector on fault obtained from inversion of these surface displacements, and thick vectors
show reconstructed displacements at each stations.
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c2 value falls below 1 with two components, suggesting that
two components are sufficient to fit the data within uncer-
tainties. However, a quick look at the synthetic time series
and postfit residuals reveal that the misfits are patterned and
do not represent white noise if only the first two components
are considered. This is consistent with the temporal function
associated with the third component which shows a temporal
pattern which suggests that this component does not only
account for white noise. The appropriate number of com-
ponents to be selected is more suitably chosen based on the
F test. In this case, the F test determines we should use three
components. More precisely, adding the third component
improves the fit better than if it were random noise at the
probability level 1-p1,2 with p1,2 = 0 (to MATLAB’s compu-
tational accuracy). Similarly, we obtain p2,3 = 2.6 � 10�23,
and p3,4 = 1 (because of the smoothness constraint on the slip
distribution, the addition of a fourth component actually
increases the chi-square statistics. The first three components
are sufficient to explain about 99.5% of the data variance.
Higher-order components account mostly for the noise added
to the synthetic data. Figure 7 shows the slip pattern and the
time functions derived from the inversion of components 1, 2,
and 3.We compare the true (prescribed) cumulative slip to the
inverted cumulative slip over the 1000 unit time period in
Figure 5. We see that the inverted slip models associated with
each of these three components indeed sum to fit the imposed
slip history quite well. This confirms that very little signal is
left in the higher-order components. So this test demonstrates
that PCAIM can faithfully reproduce complicated spatiotem-
poral signals, without the a priori assumptions of a stationary

displacement field or characteristics of the time evolution of
slip at depth.
[39] Also, this example illustrates clearly that the three

principal slip distributions do not coincide with the elementary
sources used to construct the synthetic signal. In cases with
real data, we similarly do not expect a single principal slip
distribution to coincide with a single physical phenomenon.

4. Testing PCAIM on a Postseismic Scenario

[40] In this section we use real data and compare how
PCAIM results compare to ENIF results on a postseismic
relaxation scenario. The data set consists of GPS records of
postseismic relaxation following the March 2005 Mw 8.6
Nias earthquake (Figure 8). A previous analysis of this data
set has shown that the recorded surface deformation reflects
afterslip on themegathrust in the area surrounding the rupture
area of the main shock [Hsu et al., 2006]. We use the same 10
cGPS time series as in the ENIF model (Figure 9), and the
same fault geometry. Six of the stations have fairly complete
time series. Three stations (BITI, BTHL, and PBLI) were
installed 160 to 240 days after the Nias earthquake and thus
did not record the early period of postseismic relaxation. One
of the stations (PLTO) did not function in the period between
10 and 50 days after the main shock. Some of the time series
are shown in Figure 10 (the other time series are shown in the
auxiliary material).1

Figure 8. Location of cGPS stations that recorded postseismic deformation following 2005Mw 8.6 Nias
earthquake and comparison of cumulative slip distributions 334 days after 2005 Nias earthquake obtained
from (left) ENIF [Hsu et al., 2006] and (right) PCAIM inversions. Grid shows fault subdivision in
20 km � 16 km patches. Fault dips to northeast. Dip angle increases from 10� near trench to 30� near
bottom edge of fault [Hsu et al., 2006]. Blue boxes show locations of patches A, B, and C used to
compare slip evolution derived from two models (Figure 12).

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JB006535.
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4.1. Data Preprocessing

[41] As implemented for this study, PCAIM requires that
the data matrix has no missing entries. Some procedure is

thus needed to estimate the missing data point. Here we
interpolate the data using a relatively flexible law the ‘‘log-
exponential’’ function [Perfettini and Avouac, 2004] which
describes the theoretical displacement that should be observed

Figure 9. Observed and modeled geodetic times series of postseismic displacement following 2005 Mw

8.6 Nias earthquake at stations BSIM, BITI, LHWA, and LEWK. Original data points are shown in green.
Red lines show displacements predicted from PCAIM slip model obtained in this study, and black lines
show displacements predicted from ENIF slip model of Hsu et al. [2006]. Two models differ significantly
only where there are missing points or in early postseismic period where ENIF slip model poorly tracks
rapidly varying velocities due to temporal filtering. Times series and modeled predictions at all stations
located in Figure 8 are shown in the auxiliary material.
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in case of frictional afterslip obeying rate-strengthening
friction. Another approach, computationally more costly,
would be to first analyze only the epochs with measurements
recorded at all stations and then use this model to estimate the
missing data points. Several iterative procedures can then be
envisioned to estimate the missing values. In either case, we
end up with a full data matrix. A more general approach is
outlined in section 6. It relies on a decomposition in which the
data are weighted according to their uncertainties. In this
case, missing data are replaced with arbitrary values with
very large uncertainties (several orders of magnitude larger
than the typical uncertainties on the measurements).

4.2. Results of Postseismic Test

[42] PCA is then run on the filled-in data matrix. The time
functions associated with the first six components are
shown in Figure 10. Qualitatively, it shows that the coherent
signal within the network is probably accounted for by only
the first three or four components.
[43] Next, we choose the number of components to be

used in the inversion. Figure 11 shows the contribution to
the data variance of the various components derived from
the PCA analysis of the 30 time series. The first component
is clearly dominant and explains about 97% of the data
variance. The reduced chi-square criteria suggest that many
more components are needed for the filtered data to fit the
original data within uncertainties (Figure 11). It is highly
probable that in fact the formal uncertainties assigned to the
data are underestimated. This is common since formal uncer-
tainties do not account for a number of sources of colored

noise [e.g., Zhang et al., 1997]. In this case, the F test is
particularly appropriate because it quantifies the improve-
ment in the fit obtained by adding a new component based on
the ratio of the chi-square obtained before and after adding
the new component. This criterion is thus independent of any
renormalization of the uncertainties. The F test yields that
four components are significant in that case. More precisely,
adding the second component improves the fit better than if it
were random noise at the probability level 1-p1,2 with p1,2 =
1.06 � 10�8. Similarly we obtain p2,3 = 9.31 � 10�4, p3,4 =
1.33 � 10�6 and p4,5 = 0.693. To facilitate comparison with
the ENIF solution of Hsu et al. [2006], we used three
components since this is the number of components that
approaches the same level of explanation of variance of the
data as the ENIF model of Hsu et al. [2006].
[44] Figure 12 shows the slip patterns derived from the

inversion of the first three components. These principal slip
models were obtained with no constraints on the rake aside
from that implicit in penalizing the Laplacian of the slip
distribution. When we add the inverted slip history associ-
ated with each of these three components, PCAIM yields a
cumulative slip model following the earthquake similar to
the ENIF cumulative slip model (Figure 8). The slip
histories inferred from the PCAIM and ENIF models at
the location of patches A, B and C (see Figure 8 for location)
are compared in Figure 13. The PCAIM and ENIF models
both predict theoretical displacements in good agreement
with the observations (Figure 9). Their respective predictions
might, however, differ very significantly where data are
missing (for example, at station BITI in Figure 9). These

Figure 10. Time functions of first six principal components. Note that higher-order components (>3)
are more erratic than lower-order components.
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differences do not impede the quality of the fit to the original
data. Thus, the two models might be considered as equally
possible slip histories.
[45] One major difference between the two slip models is

observed in the very early days of the postseismic relaxation
process. Close inspection of Figure 9 shows that the ENIF

slip model does not manage to track well the rapid decrease
in geodetic velocities during the first 10–20 days (see
stations LEWK and LHWA). In that regard, PCAIM does
a better job modeling the data as the fit to these early epochs
is improved. It thus makes sense the cumulative ENIF and
PCAIM slip models over the whole analyzed period show

Figure 11. (a) Open circles show total variance (given by singular value) explained by each single
principal component. Solid circles show cumulative fractional variance when components are successively
added to reconstruct signal, starting from first component. (b) Misfit between measured and reconstructed
displacements as number of components used to reconstruct signal increases. Misfit between measured and
filtered displacements is quantified from reduced chi-square as defined in text (equation (6)). In that case, it
is necessary, to take into account first three components for filtered data to fit original data as well as
reference model of Hsu et al. [2006] which yielded a reduced chi-square of 6. Originally, assigned
uncertainties are probably underestimated. On the basis of F test, the first four components are actually
found significant as detailed in text.

Figure 12. Slip distribution and associated pattern of surface displacements associated with each of first
three components. Notice that complexity of slip distribution increases as we move to higher components.
This results from the attempt to fit more isolated and disparate events or noise as we move into higher
components.
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similar patterns but have quite different amplitudes (Figure 8).
The slip potency (integral of cumulative slip over area) is 5.7�
1010 m3 for the PCAIM slip model and 3.9� 1010 m3 for the
ENIF slip model. The PCAIM slip model over 400 days
following the main shock amounts to as much as 28% of the
2.0 � 1011 m3 coseismic slip potency [Briggs et al., 2006],
versus 20% for the ENIF slip model. Another reason for some
of the difference between the two slip models is that the ENIF
model was obtained with some constraints on rake, positivity
of slip and moment minimization, whereas no such con-
straints were imposed on the PCAIM model. This ‘‘positiv-
ity’’ constraint on slip is practically unnecessary given the
constraints coming from the data themselves and the penalty
on spatial roughness. Finally the PCAIM slip model does not
involve any externally imposed smoothing or predetermined
functional form of the time evolution of slip while the ENIF
model has imposed temporal smoothness due to Kalman
filtering.

5. Testing PCAIM on a Slow Slip Event

[46] In this section we evaluate how PCAIM performs
compared to ENIF in the case of a transient aseismic event
(also called a ‘‘slow earthquake’’). We focused on the 1999
slow event on the Cascadia subduction zone [Dragert et al.,
2001] for which a relatively detailed source model has been
obtained with ENIF [McGuire and Segall, 2003] (Figures 14,
15, and 16). This scenario is quite different from the post-
seismic scenario analyzed in section 4 in that the signal-
to-noise ratio is much smaller and the source is more
complicated, characterized by a nonstationary spatial dis-
tribution of slip. The data set analyzed byMcGuire and Segall
[2003] consists of continuous GPS records at 12 stations of
the Pacific Northwest Geodetic Array [Miller et al., 2001]
over 115 days (Figure 14).

[47] We used the same 3-D fault geometry as McGuire
and Segall [2003], originally from Fluck et al. [1997],
which consists of 72 approximately 25 km � 15 km
subfaults. We have run inversions on the original data set
and obtained models which were showing differences with
the ENIF model of McGuire and Segall [2003]. Those were
difficult to interpret because we were not able to reproduce
the preprocessing of McGuire and Segall [2003], who
removed interseismic secular velocities from the original
time series, and also because PCAIM, unlike ENIF, does not
account for framework errors and benchmark wobble. To
facilitate the comparison we show here a model obtained by
using, as an input in the inversion, the theoretical displace-
ments predicted from the ENIF model. We found that the
PCAIM source model matches the input data to better than
0.15 mm, when four components are used (the standard
deviation of the residuals is 0.352 mm for one component,
0.151 mm for two components, and 0.138 mm for three
components). This means that, if three or more components
are taken into account, the PCAIM model and the ENIF
models predict displacements which differ insignificantly in
view of the 1–2 mm spread in the filtered data, as the
graphical comparison of Figure 14 shows. One corollary of
that finding is that for PCAIM to work on real data, the
noise should be corrected for within components of order 4
and lower. This can only be achieved with efficient filtering
of any spatially correlated noise in the data (framework
errors and tropospheric effects in particular).
[48] Figure 15 shows the slip rates derived for both the

PCAIM and ENIF models for the same time periods as
those chosen by McGuire and Segall [2003]. Additionally,
Figure 16 shows the cumulative slip models over the full
115 day period corresponding to the two models. These
models have similar cumulative slip potencies of 7.0 �
108 m3 for the PCAIM model and 8.9 � 108 m3 for the

Figure 13. Comparison of slip evolution as determined from ENIF inversion (dashed line) and PCAIM
inversion (continuous line) at three different fault patches A, B, and C. See Figure 8 for the locations of
the patches.

B03401 KOSITSKY AND AVOUAC: INVERTING GEODETIC TIME SERIES WITH PCAIM

14 of 19

B03401



ENIF model and they both suggest two subevents with
similar latitudinal location and extent. Slow slip first started
in the south and then moved to the north. They do, however,
differ with regard to the detail of the slip distribution, in
particular the depth range. Slip is shallower in the PCAIM
model than in the ENIF model. We interpret this difference
as due different methods use to regularize the inversions
and which therefore tend to favor different solutions, but
equivalent in terms of the fit to the data. This test shows that
a source model as complicated as the one proposed for the
1999 Cascadia slip event can be reproduced from PCAIM.
However, in such a low signal-to-noise case, it is necessary
to appropriately filter the correlated noise in the GPS times
series, as can be done with filtering tools built-in to ENIF
[McGuire and Segall, 2003].

6. Discussion: Performance, Limitations and
Extensions of PCAIM

[49] Our study demonstrates the validity of the PCAIM
approach and that it yields results comparable to the ENIF
method. In addition, PCAIM is more flexible since it can be
used to invert any kind of temporally varying fault slip

including coseismic, postseismic, and transient aseismic slip
events, and it is computationally very efficient. The total
number of independent variables for the r component
PCAIM algorithm on a data set of m GPS stations on a
fault with N subpatches recording for n epochs is r (3m + n)
(r components � [3 per station +1 per change in epoch +1
singular value]), whereas for ENIF it is 3m (n � 1) (three
per station per change in epoch). This enumeration ignores
the hyperparameters as the number of these is small and
does not scale with the size of the data set. Because r is
typically less than 5, for even moderately small values of n
and m PCAIM represents a great reduction over an epoch-
to-epoch type of inversion in the number of parameters
necessary to describe slip on the fault.
[50] The method we describe above is based on a stan-

dard SVD and can therefore only deal with data that are
sampled at each station at each epoch and assumed to have
equal uncertainties. While the epochs do not have to be
evenly spaced, inverting jointly the daily GPS and single
epoch measurements from campaign GPS measurements, is
not possible this way. However, the technique can be
adapted to allow this kind of joint inversion. A partial
solution is employing weighted SVD if each component

Figure 14. Continuous GPS records of 1999 Cascadia slow earthquake. Plots show east and north
displacements recorded at 12 stations (located in Figure 15) over a 115 day period spanning the event.
Dots are time series ofMcGuire and Segall [2003] in which contributions from secular velocity, reference
frame errors, and benchmark wobble have been removed. Black solid lines show predictions of best
fitting slip model determined from ENIF inversion of these data. Red solid lines show theoretical
displacements predicted from PCAIM slip model derived from inversion of times series predicted by
ENIF model. First three principal components were retained.
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Figure 15. Time evolution of slip rate distribution corresponding ENIF slip model of (bottom)McGuire
and Segall [2003] and (top) to PCAIM model obtained in this study. Black triangles show locations of
GPS stations.
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at a given station has relatively constant error with time. A
better option is to replace the standard SVD with a more
sophisticated decomposition. In that regard, the decompo-
sition of Srebro and Jaakkola [2003] is particularly adapted
to take into account individual measurement errors and deal
with missing data points. In this approach the data matrix X
is decomposed into components U, S, V, with each data
point weighted according to the square of its standard error.

This decomposition allows us to appropriately take into
account formal uncertainties on the data as well as deal with
missing data by assigning them infinite standard errors. For
joint GPS and InSAR time series, we can assign errors of
infinity to periods at which we have no InSAR scenes. This
alternative decomposition, although not used in the present
study, is implemented in the PCAIM code available from the
Tectonics Observatory web site.
[51] Instead of inverting each component separately, we

can construct a large block-diagonal system of equations to
simultaneously invert any number of components we wish.
As long as no additional linear constraints are added, the
block-diagonal construction does not increase the computa-
tional complexity. However, if we are willing to increase the
computational time of the algorithm, we can add linear
equality or inequality constraints to the model. For example,
these could include adding additional data points at partic-
ular times and locations not included in X or impose a
positivity constraint on the model.
[52] The analysis of the Nias earthquake postseismic data

set shows a significant amount of highly correlated noise
is incorporated into the first several components of the
PCAIM Nias model (for example, time function 2 in
Figure 10). This noise can be smoothed out through temporal
smoothing of the time function associated with each principal
component. This procedure should, however, be handed with
caution since it can lead to filtering out meaningful signal as
well as noise. Another option would be to preprocess the time
series to remove the correlated noise within the network, as
done in the ENIF procedure.

7. Conclusion

[53] Using synthetic tests and comparison to current
methods, we have demonstrated the effectiveness of the
PCAIM algorithm for inverting geodetic time series for
temporal variations of fault slip at depth. Several main
advantages of PCAIM over other existing methods are: it is
computationally efficient; it can deal with complex temporal
variations and irregularly spaced sampling epochs; and it
does not require adjustable parameters other than the number
of components and those necessary to regularize the inver-
sion (here the weight on Laplacian-based smoothing of the
slip distribution). We have roughly outlined several exten-
sions and variations of the PCAmethod described above that
can make PCAIM an efficient and versatile inversion algo-
rithm capable of handling missing data, and multiple types of
data on multiple timescales.

Appendix A: Proofs

[54] Consider a slip distribution a assumed to be a solution
of Gaa = d where d is known data. Assume that epoch-by-
epoch inversion is valid and the solution is unique. The
results still holds when there is a nontrivial subspace of
solutions, but we stick to the unique solution case for
clarity of presentation. We prove here the two following
propositions:
[55] 1. As r ! rank(X) PCAIM gives the same result as

day-by-day inversion.

Figure 16. Cumulative slip distribution of ENIF slip
model (top) of McGuire and Segall [2003] and (bottom) of
PCAIM model obtained in this study, corresponding to 115
days covered by cGPS data of Figure 14. Blue triangles
show locations of GPS stations.
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[56] 2. For each 1 � k � rank(X), the kth principal slip
distribution exists and is a linear combination of the slip
distributions derived from epoch-by-epoch inversions.
[57] We will demonstrate the latter result first.
[58] We show that each left singular vector is the sum of

the columns of X, then based on the assumption that epoch-
by-epoch inversion has a solution we show that there exists a
solution to Gaa = xi. We conclude that each equation of the
form Gaa = ui has a solution and thus there is at least one slip
distribution corresponding to each left singular vector.
[59] Consider the full principal component decomposition

of

Xm�n ¼ Um�mSm�nV
t
n�n: ðA1Þ

From linear algebra we know that U and V are of full rank
and thus invertible, so

Xm�nVn�n ¼ Um�mSm�nV
t
n�nVn�n ¼ Um�mSm�n: ðA2Þ

Since S is a diagonal matrix, equation A2 tells us that each
column of U multiplied by a constant is the sum of weighted
averages of the columns of X. In particular, for S(i, i) 6¼ 0,

uiS i; ið Þ ¼
Xn
k¼1

xkv k; ið Þ ðA3Þ

ui ¼
Xn
k¼1

xk
v k; ið Þ
S i; ið Þ : ðA4Þ

Because we assume that the epoch-by-epoch inversions are
valid, we know for each 2� k� rank(X), the equationGaak =
xk � xk�1 has a solution ak. By the definition of linearity of
Ga, it’s clear thatGa (b � ak + c � ak0) = bGa (ak) + cGa(ak0). By
induction on the number of terms in parentheses, we can find
a slip distribution resulting in surface displacement equal to
any linear combination of {xk� xk�1}. In particular for any
k0 � k, (xk� xk�1) + (xk�1� xk�2) + . . . + (xk0+1� xk0) = xk�
xk0 and �(xk � xk0) = xk0 � xk are both in the span of these
epoch-by-epoch surface displacements. Thus for any k0, k,
xk0 � xk has a corresponding slip distribution.
[60] Recall X is centered and in particular this implies

Xn
j¼1

xj ¼ 0: ðA5Þ

We divide by n and subtract xk to each side and see the
follow statements are equivalent:

Xn
j¼1

xj ¼ 0; ðA6Þ

1

n

Xn
j¼1

xj ¼ 0; ðA7Þ

�xk þ
1

n

Xn
j¼1

xj ¼ �xk ; ðA8Þ

1

n

Xn
j¼1

xj � xk ¼ �xk ; ðA9Þ

1

n

Xn
j¼1

Ga aj � ak
� �

¼ �xk : ðA10Þ

We combine equations (A10) and (A4) to find a weighted
sum of slip distributions from epoch-by-epoch inversions
which results the displacement ui at the surface:

ui ¼
Xn
k¼1

xk
v k; ið Þ
S i; ið Þ ; ðA11Þ

ui ¼
Xn
k¼1

� 1

n

Xn
j¼1

Ga aj � ak
� � !

v k; ið Þ
S i; ið Þ ; ðA12Þ

ui ¼ Ga

Xn
k¼1

� 1

n

Xn
j¼1

aj � ak
� � !

v k; ið Þ
S i; ið Þ

" #
: ðA13Þ

[61] Since r = rank(X) implies X = UrSrV
0
r, it is clear that

the columns of X and the columns of U span the same space.
The previous equations demonstrate each column of U has
an associated slip distribution. Thus we can write a slip
solution to any linear combination of the column of X (in
particular the epoch-by-epoch input data xk � xk�1) in terms
of a linear combination of the slip solutions of U. Thus since
the slip solution to xk � xk�1 is unique, we arrive at the
same result regardless of whether we apply PCAIM or
epoch-by-epoch inversion to X. This ends our proof of (2).
[62] Let us assume that it is valid to model the epoch-by-

epoch displacements as resulting from fault slip at depth.
Here show that, if r = rank(X), PCAIM generates the same
results as if we had performed an inversion of the displace-
ment between epochs i � j.
[63] As the rank of X is r, we know that X = UrSrVr

t holds
exactly. By the previous proof, we know that each column
vector in Ur has an inverse. That is, there exists a matrix Lr
such that Ga � Lr = Ur. This implies that X = Ga � LrSrVrt
holds exactly. Thus we have a slip distribution LrSr Vr

t that
describes the incremental slip along the fault at each epoch.
But by the assumption of uniqueness of the epoch-by-epoch
inversion solutions LrSrVr

t must be the same as the epoch-
by-epoch slip distribution. This concludes our proof of (1.).
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