Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics

Hiroyuki Noda,1,* Nadia Lapusta1,2 and Hiroo Kanamori1

1Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA.
E-mail: hnoda@jamsiec.go.jp
2Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA

Accepted 2013 February 19. Received 2012 February 14; in original form 2011 May 13

SUMMARY
Stress drop, a measure of static stress change in earthquakes, is the subject of numerous investigations. Stress drop in an earthquake is likely to be spatially varying over the fault, creating a stress drop distribution. Representing this spatial distribution by a single number, as commonly done, implies averaging in space. In this study, we investigate similarities and differences between three different averages of the stress drop distribution used in earthquake studies. The first one, $\Delta \sigma_M$, is the commonly estimated stress drop based on the seismic moment and fault geometry/dimensions. It is known that $\Delta \sigma_M$ corresponds to averaging the stress drop distribution with the slip distribution due to uniform stress drop as the weighting function. The second one, $\Delta \sigma_A$, is the simplest (unweighted) average of the stress drop distribution over the fault, equal to the difference between the average stress levels on the fault before and after an earthquake. The third one, $\Delta \sigma_E$, enters discussions of energy partitioning and radiation efficiency; we show that it corresponds to averaging the stress drop distribution with the actual final slip at each point as the weighting function. The three averages, $\Delta \sigma_M$, $\Delta \sigma_A$, and $\Delta \sigma_E$, are often used interchangeably in earthquake studies and simply called ‘stress drop’. Yet they are equal to each other only for ruptures with spatially uniform stress drop, which results in an elliptical slip distribution for a circular rupture. Indeed, we find that other relatively simple slip shapes—such as triangular, trapezoidal or sinusoidal—already result in stress drop distributions with notable differences between $\Delta \sigma_M$, $\Delta \sigma_A$, and $\Delta \sigma_E$. Introduction of spatial slip heterogeneity results in further systematic differences between them, with $\Delta \sigma_E$ always being larger than $\Delta \sigma_M$, a fact that we have proven theoretically, and $\Delta \sigma_A$ almost always being the smallest. In particular, the value of the energy-related $\Delta \sigma_E$ significantly increases in comparison to the moment-based $\Delta \sigma_M$ with increasing roughness of the slip distribution over the fault. Previous studies used $\Delta \sigma_M$ in place of $\Delta \sigma_E$ in computing the radiation ratio $\eta_R$ that compares the radiated energy in earthquakes to a characteristic part of their strain energy change. Typical values of $\eta_R$ for large earthquakes were found to be from 0.25 to 1. Our finding that $\Delta \sigma_E \geq \Delta \sigma_M$ allows us to interpret the values of $\eta_R$ as the upper bound. We determine the restrictions placed by such estimates on the evolution of stress with slip at the earthquake source. We also find that $\Delta \sigma_E$ can be approximated by $\Delta \sigma_M$ if the latter is computed based on a reduced rupture area.

Key words: Earthquake dynamics; Dynamics and mechanics of faulting; Fractures and faults.

1 INTRODUCTION
Since earthquakes lead to the overall reduction of stress on the ruptured fault domain, stress drop is an important physical parameter which has long been studied in seismology (e.g. Knopoff 1958; Kanamori & Anderson 1975; Abereromic 1995; Allmann & Shearer 2009). Most investigations report a single value for the stress drop in an earthquake. Such a single value of stress drop for the entire rupture can be interpreted unambiguously only when the stress drop is constant (i.e. spatially uniform) over the ruptured domain (Figs 1a and b). In real earthquakes, the stress drop most likely varies locally over the ruptured fault domain (e.g. Bouchon 1997), creating a spatially varying stress drop distribution. A synthetic

*Now at: Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001 Japan
of the stress drop distribution. \( \overline{\Delta \sigma} \) corresponds to averaging the stress drop distribution with the slip distribution due to uniform stress drop as the weighting function (Madariaga, 1979, Section 2.1, appendix A). \( \overline{\Delta \sigma} \) represents the simplest (unweighted) average of the stress change over the ruptured domain (Section 2.2). Finally, \( \Delta \overline{\sigma} \) corresponds to averaging the stress drop distribution with the actual final slip at each point as the weighting function, as implied by the developments in Noda & Lapusta (2012) and shown in Section 2.3. To the best of our knowledge, this is the first study that explicitly introduces this energy-based average measure although its notion has been indirectly implied by Kostrov & Das (1988).

Hence it is important to understand how the seismologically estimated stress drops \( \overline{\sigma} \) are related to the area-averaged stress drops \( \overline{\Delta \sigma} \) and energy-related stress drops \( \Delta \overline{\sigma} \). In this study, we investigate this issue by creating synthetic heterogeneous slip scenarios motivated by natural earthquakes (Manighetti et al., 2005; Lavallée et al., 2006) and comparing the three average stress drop measures \( \overline{\Delta \sigma}, \overline{\Delta \sigma} \), and \( \Delta \overline{\sigma} \) for these scenarios (Section 3). We find significant and systematic differences between these three average stress drop measures. The significance of our results for earthquake source physics is discussed in Section 4. We summarize our main findings in Section 5.

Note that the extent and nature of slip and stress heterogeneity on faults is a subject of active study and debate. In this work, heterogeneous slip distributions are generated by randomizing an assumed characteristic slip distribution in a manner motivated by the 2-D stochastic model by Lavallée et al. (2006). As discussed by Lavallée et al. (2006) and detailed in Section 3.1, the representation of slip heterogeneity in the model is based on the assumption that the seismic process is length scale-independent for a wide but truncated range (also see Andrews, 1980). Due to physical processes acting during dynamic rupture, the slip heterogeneity may have different properties than assumed here, and, in particular, be scale-dependent (e.g., Cocco & Tinti, 2008). Note that we also explore the effect of the characteristic shape of slip distribution which may result from the physics of the dynamic rupture process, making the slip distributions we consider not fully stochastic. The heterogeneous slip distributions we use serve as representative examples of how heterogeneity can affect the stress drop averages used in different applications. The developed procedures can be applied for determining effects of other representations of heterogeneity on average stress drop measures.

2 AVERAGE STRESS DROP MEASURES FOR HETEROGENEOUS STRESS CHANGE DISTRIBUTIONS

First, let us define the mathematical quantities needed to describe slip in an earthquake, the resulting stress drop distribution and its averaging. Let us consider stress changes due to rupture of a planar fault \( S \) embedded in a linear elastic infinite homogeneous medium (Fig. 2). We define a 3-D coordinate vector \( x \) with the unit basis vectors denoted by \( e_1, e_2 \) and \( e_3 \). Without loss of generality, let the fault \( S \) coincide with the \( x_1-x_3 \) plane so that \( e_3 \) is normal to \( S \). The initial distribution of the traction on \( S \) is denoted by \( \mathbf{t}^{\text{in}}(x_1, x_3, x_3) \). An earthquake produces slip distribution \( \Delta u(x_1, x_3) \), and the traction on \( S \) changes to \( \mathbf{t}^{\text{eq}}(x_1, x_3, x_3) \). Without loss of generality, let us choose \( e_1 \) to coincide with the overall slip direction (the direction parallel to the integral of \( \Delta u(x_1, x_3) \) over \( S \)). Note that we are not considering fault opening; hence \( \Delta u(x_1, x_3) = 0 \) and \( \Delta u \) is perpendicular to \( e_3 \).
The (vector) distribution of stress drop on $S$, $\Delta\sigma(x_1, x_2)$, is defined as

$$\Delta\sigma(x_1, x_2) = \tau^{im}(x_1, x_2) - \tau^{im}(x_1, x_2).$$  \hspace{1cm} (1)

Note that $\Delta\sigma(x_1, x_2) = 0$. Representing this stress drop distribution as a single scalar quantity implies averaging $\Delta\sigma$ in a particular way. Often, the averaging is desired over the ruptured domain $\Sigma$, which is defined as the domain with non-zero slip,

$$\Sigma = \{x \in S \mid \Delta u(x) \neq 0\}.$$  \hspace{1cm} (2)

In practice, it is difficult to determine $\Sigma$ accurately from seismological observations because of band-limitedness and smoothing in selecting a solution (e.g., Harris & Segall 1987; Hatzell et al. 1996). Furthermore, in numerical forward simulations of dynamic rupture, some frictional constitutive laws (e.g. a rate- and state-dependent friction law by Dieterich 1979) predict mathematically non-zero slip everywhere on $S$. Hence, let us define a truncated ruptured domain, in which we include only those regions where slip exceeds a given fraction $\theta$ of the maximum slip,

$$\Sigma_\theta = \{x \mid \Delta u(x) > \theta \max(\Delta u)\}.$$  \hspace{1cm} (3)

Note that $\Sigma_\theta = \Sigma$ at $\theta = 0$.

Both the slip distribution $\Delta u(x_1, x_2)$ and the stress drop distribution $\Delta\sigma(x_1, x_2)$ are vectors with two non-zero components, in the fault-defining directions $e_i$ and $e_j$. In many situations, slip in a single direction dominates, and in this study, this would be the overall slip direction $e_i$. Hence, while the various averaged quantities are defined below in terms of the vector distributions $\Delta u$ and $\Delta\sigma$, components $\Delta u_i$ and $\Delta\sigma_i$ often dominate, and the terms with the other component can often be ignored.

### 2.1 Averaging of stress drop distribution based on seismic moment

Seismological estimates of average stress drop are based on the seismic moment $M_0$ and fault geometry/dimensions. In the case of faults with characteristic dimension $\rho = A^{1/2}$, the following expression is used (e.g., Kanamori & Anderson 1975; Parsons et al. 1988):

$$\overline{\Delta\sigma}_M = \frac{C M_0}{\rho^3} = \frac{C M_0}{A^{1/2}}.$$  \hspace{1cm} (4)

where $A$ is the ruptured area and $C$ depends on the shape of the ruptured domain, for example, $C = 2.44$ for a circular ruptured domain (or crack) and $C = 2.53$, 3.02 and 5.21 for rectangular cracks with aspect ratios $\alpha = 1$, 4 and 16, respectively. For the determination of $C$ in the rectangular cases, see Appendix B1. $M_0$ can be well estimated from long-period waves, and the characteristic dimension $\rho = A^{1/2}$ can be estimated from seismic observations under certain assumptions, such as a relationship between the corner frequency and the length scale of the rupture (e.g., Aki 1967; Brune 1970; Madariaga 1976). In this study, we call such stress drop estimates moment-based or seismologically estimated.

If the actual stress drop is uniform over the ruptured domain, $\overline{\Delta\sigma}_M$ is equal to that uniform value. If the actual stress drop is heterogeneous, given by the distribution $\Delta\sigma(x_1, x_2)$, then $\overline{\Delta\sigma}_M$ gives a weighted average of $\Delta\sigma(x_1, x_2)$. The average is weighted by the slip distribution $E_{12}$ due to the uniform stress drop in the overall slip direction $e_i$ over the same ruptured domain,

$$\overline{\Delta\sigma}_M = \overline{\int_S \Delta\sigma \cdot E_{12} \mathrm{d}S}.$$  \hspace{1cm} (5)

where $w$ is a weighting function. This relation was established by Madariaga (1979), as reviewed in Appendix A.

Since the overall slip is in the direction of $e_i$, the term in eq. (5) with $E_{12}$ is expected to dominate. If the effect of $E_{12}$ is negligible (as is the case for circular ruptures, for example), then $\overline{\Delta\sigma}_M$ is actually the average of the near-zero stress change distribution $\Delta\sigma$, weighted by the slip function $E_{12}$. For circular ruptures, $E_{12}$ has an elliptical shape, peaking in the middle of the ruptured domain $\Sigma$ and going to zero at the boundaries of it. Hence this moment-based averaging would emphasize stress changes in the middle of the ruptured domain.

Note that an accurate determination of the ruptured domain $\Sigma$ is difficult in practice as mentioned in the previous section. For example, smoothness constraints in finite fault inversions result in areas of near-zero slip that are often poorly constrained (e.g., Somerville et al. 1999). Such areas would affect the extent of the rupture and hence the stress drop estimate $\overline{\Delta\sigma}_M$. To study this effect, we use the definition of the truncated ruptured domain eq. (3) to define the corresponding threshold-dependent moment-based average stress drop $\overline{\Delta\sigma}_{\text{th}}$ given by

$$\overline{\Delta\sigma}_{\text{th}} = \frac{C M_0}{A^{1/2}},$$  \hspace{1cm} (6)

where $A_{\text{th}}$ is the area of $\Sigma_{\text{th}}$. $\Sigma_{\text{th}}$ can have a complex shape if the slip distribution is heterogeneous. To enable comparison to the seismologically estimated stress drops, we do not attempt to compute $C$ for the actual complex shapes, rather using the value of $C$ for the original (circular or rectangular) domain. Hence $\overline{\Delta\sigma}_{\text{th}}$ in eq. (6) depends both on the shape of the original ruptured domain that
determines $C$ and on the threshold $th$. For further discussion, see Section 4.2. Note that Somerville et al. (1999) suggested a related but somewhat different criterion to reduce the rupture area based on slip; in their case, the domain was trimmed from outside so that it retained the rectangular shape.

2.2 Spatial average of stress drop distribution

The seismologically estimated stress drop is sometimes intuitively interpreted as the spatially averaged stress drop. There are several studies comparing the seismologically estimated stress drops and stress drops obtained in one-degree-of-freedom systems such as spring–slider systems and laboratory frictional experiments (e.g. Marone 1998; He et al. 2003). The former values are determined through a rather complex averaging procedure as already discussed, while the latter values are simple spatial averages over the simulated fault which is assumed to undergo uniform slip. Although such comparisons may be valid under certain conditions, it is important to understand what those conditions are.

The spatially averaged stress drop can be expressed as

$$
\overline{\Delta \sigma}_{A} = \frac{\int_{A} \Delta \sigma \cdot dS}{A} = \frac{\int_{A} \Delta \sigma \cdot e_{i} \cdot w \cdot dS}{\int_{A} e_{i} \cdot w \cdot dS}; \quad w = \begin{cases} e_{i} \quad (x \in \Sigma) \\ 0 \quad \text{otherwise} \end{cases}
$$

(7)

Hence, it is the average of stress change distribution $\Delta \sigma$ using a boxcar function as the weighting function. Madariaga (1979) pointed out that the area-averaged stress drop $\overline{\Delta \sigma}_{A}$ is different from the seismologically estimated stress drop $\overline{\Delta \sigma}_{M}$.

Note that $\overline{\Delta \sigma}_{A}$ depends on the ruptured domain $\Sigma$, just like $\overline{\Delta \sigma}_{M}$. If $\Sigma$ includes regions of near-zero slip, $\overline{\Delta \sigma}_{A}$ decreases. Indeed, if stress change is averaged over the entire infinite plane, the average is going to be zero. Using the area approximation in eq. (3), we can define

$$
\overline{\Delta \sigma}_{A\Sigma} = \frac{\int_{\Sigma} \Delta \sigma \cdot dS}{A_{\Sigma}} = \frac{\int_{\Sigma} \Delta \sigma \cdot e_{i} \cdot w \cdot dS}{\int_{\Sigma} e_{i} \cdot w \cdot dS}; \quad w = \begin{cases} e_{i} \quad (x \in \Sigma_{i}) \\ 0 \quad \text{otherwise} \end{cases}
$$

(8)

where the stress drop is averaged over the sub domain $\Sigma_{i}$.

2.3 Averaging stress drop distribution based on energy considerations

One of the important uses of stress drop for earthquake physics is in studies of energy partitioning (e.g. Venkataraman & Kanamori 2004; Kanamori & Rivera 2006). Here, we consider the average $\overline{\Delta \sigma}_{E}$ of the stress drop distribution $\Delta \sigma(x_{1}, x_{2})$ that would be rigorously consistent with that usage, and show that it corresponds to averaging the stress drop distribution with the actual final slip $\Delta u$ at each point as the weighting function,

$$
\overline{\Delta \sigma}_{E} = \frac{\int_{\Sigma} \Delta \sigma \cdot \Delta u \cdot dS}{\int_{\Sigma} \Delta u \cdot dS} = \frac{\int_{\Sigma} \Delta \sigma \cdot e_{i} \cdot w \cdot dS}{\int_{\Sigma} e_{i} \cdot w \cdot dS}; \quad w = \Delta u.
$$

(9)

Clearly, this expression is different from that for the moment-based stress drop average $\overline{\Delta \sigma}_{M}$. As for $\overline{\Delta \sigma}_{M}$ and $\overline{\Delta \sigma}_{A}$, the components of stress drop and slip in the overall slip direction $e_{i}$ often dominate, in which case the expression simplifies to

$$
\overline{\Delta \sigma}_{E} = \frac{\int_{\Sigma} \Delta \sigma \cdot \Delta u_{i} \cdot dS}{\int_{\Sigma} \Delta u_{i} \cdot dS}.
$$

(10)

To understand why this is the relevant stress drop average, let us review the basics of energy partitioning studies, which are typically done in the context of a simplified conceptual diagram (Fig. 3). In the diagram, the stress on the fault drops from the initial value $\tau_{in}$ to the final value $\tau_{fin}$ through slip $\Delta u$. Then the slip proceeds at a constant stress $\tau_{fin}$ until it stops. A number of assumptions are made in this conceptual case: in particular, the initial and final stresses on the fault are assumed to be identical to the shear stress at the onset of slipping and at the residual level, respectively. This assumption cannot be exactly true for finite-fault ruptures. First, the initial average stress before the rupture event is likely smaller than the shear stress at the onset of slipping. Secondly, the final average stress can also be different from residual sliding resistance due to overshoot or undershoot (e.g. McCarron & Rivera 2006). More realistic diagrams have been studied (e.g. Cocco et al. 2006), but let us consider this idealized case to introduce the developments of earlier studies (e.g. Venkataraman & Kanamori 2004; Kanamori & Rivera 2006).

The total strain energy release $\Delta W$ is given by

$$
\Delta W = \frac{\tau_{in}^{2} + \tau_{fin}^{2}}{2} \cdot \Delta u \cdot A,
$$

(11)

where $\Delta u$ is the average slip. If $\Delta u = 0$, the energy dissipated on the fault plane is $E_{D} = \tau_{fin}^{2} \Delta u \cdot A$ and the difference between $\Delta W$ and $E_{D}$ is given by

$$
\Delta W_{0} = \frac{1}{2} \overline{\Delta \sigma} \cdot \Delta u \cdot A,
$$

(12)

where $\overline{\Delta \sigma} = \tau_{in} - \tau_{fin}$.

In previous studies (e.g. Venkataraman & Kanamori 2004; Kanamori & Rivera 2006), $\Delta W_{0}$ was called "the available energy", in the sense that it is the energy available for seismic radiation and any further dissipation. In a more general energy release process (e.g. an undershoot case where the stress on the fault plane during faulting becomes smaller than the final stress $\tau_{fin}$, as discussed in Section 4.1), the dissipation on the fault can, in fact, be smaller than the dissipation with the final shear stress $E_{D}$, and hence more energy
than $\Delta W_0$ can be radiated. That is why we refer to $\Delta W_0$ as a partial
strain energy change.

In the context of the energy-partitioning diagram (Fig. 3), part of
$\Delta W_0$ is expended as the increased dissipation at the rupture front
called fracture energy and denoted $E_f$, and the remainder is radiated
as seismic waves. That allows us to define the radiation ratio,
\begin{equation}
\eta_r = \frac{E_f}{\Delta W_0} = \frac{2 \mu E_f}{\Delta \sigma M_0},
\end{equation}
where $E_f$ is the radiated energy. $\eta_r$ has been called 'radiation efficiency' (e.g. Venkataratnam \& Kanamori 2004), but we would like to
call it 'radiation ratio' because the word 'efficiency' implies that $\eta_r$
cannot exceed 1. Since $\Delta W_0$ is only a part of strain energy release,
$\eta_r$ can exceed 1 in general.

The radiation ratio provides an important window into the earth-
quake physics (Kanamori \& Rivera 2006). Its interpretation relies on the possibility of representing the average dissipative behaviour of
a fault through the conceptual slip-weakening representation of
Fig. 3(a), and further, on using the seismicly estimated, moment-
based values of stress drop for $\Delta \sigma$. However, the energy partitioning
scheme of Fig. 3(a) is rigorously valid only for a one-degree-of-
freedom system represented as the combination of a spring, a slider
and a dashpot (Fig. 3b), with the friction under the slider described
by a linear slip-weakening law. Similar one-degree-of-freedom sys-
tems (usually without a dashpot, which here is a proxy for seismic
radiation, but often with other friction laws) are frequently used as
analogs to earthquake faults, with stick-slip obtained in such sys-
tems being compared to earthquake sequences (e.g. Marone 1998).

The finite-fault process of dynamic rupture is much more involved.
Even in the case of ruptures with spatially constant stress drop and
the same slip-stress relation at each point, constructing the averaged
behaviour of stress with slip is non-trivial, since different points
of the fault have different slip (for example, an elliptical slip shape
for a circular shear rupture). More generally, stress depends on
slip through other variables, such as slip rate, static variables and
temperature (e.g. Rice 2006; Dieterich 2007; Tullis 2007; Lapusta
\& Lin 2009; Noda \& Lapusta 2010b), and hence the dependence of stress on slip will be, in general, different at different points.
Noda \& Lapusta (2012) proposed a rigorous way for averaging the
stress-slip behaviour and constructing energy-partitioning diagrams
for dynamic rupture that attempt to preserve the features of local
stress-slip behaviour. This point is discussed more in Section 4.1.

To understand what kind of average of the stress drop distribution
should enter eq. (12) for the radiation ratio, let us consider the
rigorous computational of the partial strain energy change $\Delta W_0$.
The standard approach to compute the strain energy change is as
follows. We start with two elastostatic solutions (Fig. 2): (1) the
initial state, with the slip on $S$ being $0$ and traction being $t_m(x_1, x_2)$
and (2) the final state, with the slip and traction being $\Delta \sigma(x_1, x_2)$
and $t_m(x_1, x_2)$, respectively. Since the medium is assumed to be
linear elastic, all linear interpolations/extrapolations of these two
solutions also satisfy linear elastostatic equations. Introducing a
parameter $\lambda \in [0, 1]$, we can define a continuous set (or a virtual
path) of static solutions that connects the initial state ($\lambda = 0$) and
the final state ($\lambda = 1$),
\begin{align}
\delta_{sp}(\lambda, x) &= \lambda \Delta \sigma, \\
\tau_{s}(\lambda, x) &= \lambda t_m + (1 - \lambda) t_m,
\end{align}
where $\delta_{sp}$ and $\tau_{s}$ represent slip and shear traction on the fault
during this virtual process, respectively. The decrease in the strain
energy, which is path-independent, can be calculated by integrating
work done by the medium along this path,
\begin{equation}
\Delta W = \int_0^1 dW = \int_0^1 \int_S \tau_{s} \cdot \delta_{sp} \ ds d\lambda.
\end{equation}
Using eq. (14), we get
\begin{equation}
\Delta W = \int_S \left[ \frac{1}{2} \Delta \sigma + t_m \right] \cdot \Delta \sigma \ ds.
\end{equation}
Partial strain energy change $\Delta W_0$ is thus
\begin{equation}
\Delta W_0 = \Delta W - \int_S t_m \cdot \Delta \sigma \ ds = \frac{1}{2} \int_S \Delta \sigma \cdot \Delta \sigma \ ds.
\end{equation}
The expression for $\Delta W_0$ can be used to define an energy-based
average measure $\overline{\Delta \sigma}$ of stress drop distribution $\Delta \sigma$ through
\begin{equation}
\overline{\Delta \sigma} = \frac{\int_S \Delta \sigma \cdot \Delta \sigma \ ds}{\int_S \Delta \sigma \ ds} = \frac{\int_S \Delta \sigma \cdot \Delta \sigma \ ds}{\int_S \Delta \sigma \ ds} = \frac{\int_S \Delta \sigma \cdot \Delta \sigma \ ds}{\int_S \Delta \sigma \ ds}.
\end{equation}
Comparing eqs (12) and (18), we see that $\overline{\Delta \sigma}$ is the average stress
drop measure that enters the computation of $\Delta W_0$. From eq. (19),
$\overline{\Delta \sigma}$ represent averaging the (potentially heterogeneous) stress drop
distribution over the rupture with the final stress distribution as the
weighting function. Note that $\Delta \sigma$ is zero outside the ruptured domain
so that extending $\Sigma$ to include regions of zero slip does not affect
the value of $\overline{\Delta \sigma}$.

For future use, let us define the following averages of the initial
and final shear stress distributions,
\begin{equation}
\overline{t_m} = \frac{\int_S t_m \cdot \Delta \sigma \ ds}{\int_S \Delta \sigma \ ds},
\end{equation}
\begin{equation}
\overline{t_m} = \frac{\int_S t_m \cdot \Delta \sigma \ ds}{\int_S \Delta \sigma \ ds}.
\end{equation}
These averages can be used to compute the strain energy quantities by
\begin{equation}
\Delta W = \frac{(\overline{t_m} + \overline{t_m})}{2} \Delta \sigma \ ds, \quad \Delta W_0 = \frac{(\overline{t_m} - \overline{t_m})}{2} \Delta \sigma \ ds,
\end{equation}
where $\overline{\Delta \sigma}$ is the spatial average of $\Delta \sigma$. Note that the difference
between these two stress averages gives $\overline{\Delta \sigma}$. Hence $\overline{t_m}$ and $\overline{t_m}$
are the values to use as the initial and final stress averages in the
energy-partitioning diagrams of the type shown in Fig. 3 (Noda \& Lapusta 2012).

If $\Delta \sigma(x_1, x_2)$ is indeed uniform within the ruptured domain, then
the three stress drop averages--$\overline{\Delta \sigma}$, $\overline{\Delta \sigma}$, and $\overline{\Delta \sigma}$--are all equal
to each other, as follows from their expressions. In general, however,
$\overline{\Delta \sigma}$ is not equal to either $\overline{\Delta \sigma}$ or $\overline{\Delta \sigma}$, and thus it is important
to know how similar or different these stress drop measures are, for
example, before using $\overline{\Delta \sigma}$ in place of $\overline{\Delta \sigma}$ for estimates of $\Delta W_0$.
We have proved that, for cases with heterogeneous stress drop, the
energy-based stress drop average $\overline{\Delta \sigma}$ is always larger than the
moment-based stress drop average $\overline{\Delta \sigma}$ (Appendix C).

In the following section, we assume heterogeneous slip distribu-
tions and compare those three measures of average stress drop.
3 COMPARISON OF THE AVERAGE STRESS DROP MEASURES FOR HETEROGENEOUS RUPTURES

3.1 Stochastic 2-D slip model

In our study, heterogeneous slip distributions are generated by randomizing an assumed characteristic slip distribution \( \phi \) in a manner motivated by the 2-D stochastic model by Lalavalle et al. (2006). Such approach is motivated by two considerations. First, it allows us to see the effects of heterogeneity on stress drops more clearly, by comparing the results to models with uniform stress change over the ruptured domain, for which \( \Delta \sigma = \Delta \sigma_0 \). Secondly, it allows us to study the effect of the characteristic shape of the slip distribution, such as a triangular shape (e.g. Manigletti et al. 2005). The characteristic shape of slip distribution may result from the physics of the dynamic rupture process, making the slip distribution not fully stochastic. We assign the slip distribution as follows:

\[
\Delta u_i(n_1, n_3) = C_\rho \phi_i(n_1, n_3) R(n_1, n_3),
\]

\[
\Delta u_i(n_1, n_3) = 0,
\]

\[
\Delta u_i(n_1, n_3) = C_\rho \phi_i(n_1, n_3),
\]

where \( n_1 \) and \( n_3 \) are integer indices for the discrete point in the \( x_1 \) and \( x_3 \) directions, \( C_\rho \) is a normalization factor such that the ruptures studied here have unit potency and \( R \) is a filtered Gaussian random field with the mean and the standard deviation of 1 and \( \chi \), respectively. \( R \) can be written as

\[
F[R - 1] = C_H(k_{\text{Hz}} - k)k^{-\frac{1}{2}} F[X],
\]

where \( F[\cdot] \) represents discrete Fourier transformation, \( X \) is an uncorrelated random variable distributed over \( S \), \( k \) is the length of a 2-D wavenumber vector, \( v+1 \) is the decay rate in the power spectrum density of \( R \) with increasing \( k \), \( H \) is the Heaviside step function, \( k_{\text{Hz}} \) is the truncation wavenumber and \( C_H \) is a constant which makes the standard deviation of the distribution equal to \( \chi \). As \( v \) decreases and \( \chi \) increases, the slip distribution becomes rougher in terms of its spectral structure and amplitude of fluctuation, respectively. Because \( M_1 \) and \( M_3 \) are the only non-zero components of the seismic moment tensor in this study, the spatial integration of \( \Delta u_i(n_1, n_3) \) and \( \phi_i \) results in zero.

Lavallée et al. (2006) examined the finite fault inversion of strong ground motion data for 1994 Northridge earthquake (Liu & Archuleta 2000), and estimated the decay rate of the spectral power density of slip distribution \( v+1 \) if \( \phi \) is uniform as 1.74 and 2.05 for dip-slip and strike-slip components, respectively. They also examined several earthquakes using a 1-D model, and reported the decay rate from 1.78 to 2.71. Note that those values are such that the strain energy would diverge if all the wavenumbers were accounted for, and the truncation at a high wavenumber is required to deal with the problem in the framework of continuum mechanics. As discussed by Lavallée et al. (2006), this scaling behaviour is based on the assumption that the seismic process is length-scale independent for a wide but truncated range from the grain size to the rupture length (also see Andrews 1980). Note that the spectral structure of the slip distribution is modified from that implied by eq. (24) due to the multiplication by the characteristic shape \( \phi \). In this study, we investigate \( v \) ranging from 0 to 2 (thus, \( v+1 \) from 1 to 3) to randomize the uniform stress drop model. In our calculations, the characteristic length of the crack (the diameter of the circular crack or the shorter side of the rectangular crack) is set as a unit length and discretized by 256 or 128 (in the cases with aspect ratio 16) gridpoints. The highest wavenumber \( k_0 \) is set as 128\( \pi \).

We study cases with the characteristic slip function \( \phi \) corresponding to uniform stress drop models for circular and rectangular cracks of different aspect ratios, and several other slip shapes. Out of the cases considered, \( \phi \) is non-zero only for the cases with uniform stress drop in rectangular cracks. If we choose \( \phi \) based on the uniform stress drop model, stress drop distribution \( \Delta \sigma \) becomes uniform inside \( \Sigma \) at \( \chi = 0 \) and hence the three average stress drop measures are equal to each other for \( \chi = 0 \). As \( \chi \) increases, \( \Delta \sigma \) is expected to be more and more heterogeneous.

Lavallée et al. (2006) reported that the probability distribution of slip in a single event is better explained by Lévy a-stable distribution than Gaussian or Cauchy distributions, both of which are special cases of Lévy a-stable distribution. In this study, however, we employ Gaussian distribution for the random variable \( X \) for simplicity. Liu-Zeng et al. (2005) studied the length of 1-D ruptures generated using a stochastic model with Gaussian distribution similar to the one used in this work. Gaussian distribution has two parameters (mean and variance) so that the randomness of \( X \) is controlled by a single parameter \( \chi \), while Lévy a-stable distribution has four parameters (the characteristic exponent, skewness, scale and location), and they cause additional complexity. It would be important to investigate the effect of other probability distributions (e.g. Cauchy and Lévy) in future studies.

Manigletti et al. (2005) examined not only results of finite source inversions of seismological and geodetic observations, but also geologically measured surface rupture profiles, and concluded that the slip distribution is typically triangular with various skewness. The triangular slip distributions can be generated by realizations of different probability distribution functions, but in this study we instead randomize a characteristic tapering function \( \phi \), including a triangular-shaped \( \phi \). By doing so, we can examine the effect on the average stress drop measures of not only the roughness (i.e. spectral decay power and amplitude of the random field), but also the characteristic shape of slip distributions. For each selection of \( \phi \), \( \nu \) and \( \chi \), we have analyzed 100 random cases.

It should be noted that given the non-uniqueness of the geophysical inversion problems and smoothness constraint (e.g. Minson 2010), it is somewhat arguable how well those slip distributions, especially their short wavelength features, are constrained. We are not intending to support or disqualify the proposed statistical model of the slip distribution, but take the randomization as a way of producing examples, a series of distributions with controlled roughness. To what extent we can constrain the slip distribution is an important future task in observational seismology.

\[ \Delta \sigma = \mu \left[ \frac{k_1^2(1 - \nu_p)}{k_1 k_1^1(1 - \nu_p)} + \frac{k_2^2}{k_1 k_2^1(1 - \nu_p)} \right] \]

\[ \times \left[ \frac{F[\Delta u_1]}{F[\Delta u_3]} \right], \]

where \( \nu_p \) is the Poisson's ratio which is assumed to be 1/4. Note that we shall present the results normalized by \( \Delta \sigma_0 \), so that the value of shear modulus \( \mu \) is not important in this study.
3.2 Effect of the roughness of the random field

In this section, effects of randomization of the uniform stress drop models are discussed. Such models have elliptical $\phi_i$ for a circular crack. Figs 4(a) and (b) show examples of the distributions of $\Delta u_1$ and $\Delta \sigma_1 / \Delta \sigma_M$, respectively, for different randomization parameters $\nu$ and $\chi$. The number in each panel indicates the maximum value of the field plotted. The left-most column ($\chi = 0$) corresponds to cases without randomization. Note that the discretely sampled elliptical function for $\phi$ produces a numerical error in $\Delta \sigma$ which is significant near the crack tip. This is why the maximum value of $\Delta \sigma_1 / \Delta \sigma_M$ is not equal to one in the left-most column. In the case of uniform stress drop, we can test the effect of this numerical error and find that it affects $\Delta \sigma_1 / \Delta \sigma_M$ by 2 per cent, and $\Delta \sigma_1 / \Delta \sigma_M$ by 4 per cent. Such errors are negligibly small compared with the differences between the stress drop estimates discussed in this study.

With increasing $\chi$, the variance in $\Delta u_1$ increases and we sometimes obtain locally negative slip which may not be realistic. This is why we investigate the value of $\chi$ only up to 0.5.

The heterogeneity in slip strongly affects the local distribution of stress drop $\Delta \sigma$, as can be expected. The amplitude of variations in $\Delta \sigma_1$ increases as $\chi$ increases and $\nu$ decreases. In the most rough case shown (the bottom-right panel in Fig. 4), the maximum value of $\Delta \sigma_1 / \Delta \sigma_M$ is more than 100. If such heterogeneity is realistic, the seismologically estimated average stress drop of 3 MPa would

Figure 4. Examples of distributions of (a) $\Delta u_1$ and (b) $\Delta \sigma_1 / \Delta \sigma_M$ for models based on the circular crack model with uniform stress drop (i.e. elliptical $\phi_i$). Since the spectrum decay rate of the stress drop distribution is smaller by 1 than that of the slip distribution, $\nu - 1$ is indicated in (b). The number at the bottom right of each panel indicates the maximum value of the plotted field. The diameter of the circle and the potency are normalized to 1.
correspond to the amplitude of local stress change $\Delta \sigma_1$ of the order of 300 MPa. The local stress drop can also be negative. The possibility of negative local stress drop within areas of positive slip has been recently demonstrated by earthquake sequence simulations (Noda & Lapusta 2010a). The pattern of positive and negative stress drops has also been inferred from observations (e.g. Bouchon 1997).

At the same time, we find that the spatially averaged stress drop $\overline{\Delta \sigma}$ is not much affected by the randomization. Fig. 5 shows the variation in $\overline{\Delta \sigma}$ as a function of $\chi$ for the cases with $v = 0$. Even when the local fluctuation of $\Delta \sigma_i / \Delta \sigma_M$ is larger than two orders of magnitude, the variation in $\Delta \sigma_i / \Delta \sigma_M$ is less than 0.02 of $\Delta \sigma_M$. This observation suggests that $\Delta \sigma_i / \Delta \sigma_M$ is mainly controlled by the overall shape of slip distribution $\phi$. This issue is further discussed in the next section.

The energy-based stress drop $\overline{\Delta \sigma}_E$ increases as the slip distribution becomes rougher both in terms of the amplitude and the spectral structure. Fig. 6 shows the contour lines of $\overline{\Delta \sigma}_E / \overline{\Delta \sigma}_M$. Note that the horizontal and vertical axes correspond to those in Fig. 4. We find that randomization always increases $\overline{\Delta \sigma}_E / \overline{\Delta \sigma}_M$, which can also be proven theoretically (Appendix C). This means that if one uses seismologically estimated stress drop $\overline{\Delta \sigma}_M$ in eq. (18), the partial strain energy change $\Delta W_{pl}$ is always underestimated.

All conclusions obtained in this section for circular ruptures hold for the rectangular cases as well. The details are given in Appendix B2.

### 3.3 Effect of overall shape of slip distribution

The heterogeneous slip distributions are built in eq. (23) by randomizing the characteristic slip distribution $\phi$. The expected form of $\phi$ varies depending on the physics and dynamics of rupture process. If the rupture is crack-like and expanding in a self-similar manner, the characteristic shape could be elliptical or a more concentrated variant of that due to the inward propagation of the stopping phase. If the rupture is pulse-like, then the characteristic slip shape may be increasing with the propagation distance for a growing pulse or stay constant for a steady pulse. Different arrest mechanisms would result in different tapering of the shape at the edge of the rupture. Based on a number of observed slip distributions for natural earthquakes, Manighetti et al. (2005) concluded that the slip distributions are typically triangular with various skewness. Böse & Heaton (2010) used the idea of an average slip shape to construct a procedure for predicting the final length of ongoing rupture. They followed the study of Ward (2004) in assuming that the mean slip function is represented by a function which is derived from a restricted random walk process.

Fig. 7 shows the effect of $\phi$ on $\overline{\Delta \sigma}_E / \overline{\Delta \sigma}_M$ and $\overline{\Delta \sigma}_i / \overline{\Delta \sigma}_M$ for several simple shapes. We have considered elliptical, smooth boxcar, trapezoidal, triangular and sinusoidal radial distributions for $\phi_1$, keeping $\phi_2 = 0$. Cases with $v = 1$ and $\chi = 0.3$ are shown as well as cases without randomization (i.e. $\chi = 0$). Note that the ruptured domain $\Sigma$ is a circle with the unit diameter for all those cases. For the smooth boxcar function, we use

$$\phi_1 = \begin{cases} 1, & r' < 0.4 \\ \frac{1}{2} \left[ 1 + \tanh \left( \frac{r_{\text{max}}}{0.8} \right) \right], & 0.4 \leq r' < 0.5 \\ 0, & 0.5 \leq r' \end{cases} \tag{26}$$

where $r'$ is the radial coordinate measured from the centre of the circular crack.

If $\phi$ is different from the one for the uniform stress drop model, then $\overline{\Delta \sigma}_i$ as well as $\overline{\Delta \sigma}_E$, differs from $\Delta \sigma_M$, even without randomization (Fig. 7, crosses and pluses in lower panels). The difference for the cases studied is within a factor of two, which is relatively small compared to the uncertainties in the seismological stress drop estimates (Allmann & Shearer 2009). Randomization and introduction of small scale heterogeneity increases $\overline{\Delta \sigma}_E$, but causes little additional changes in $\overline{\Delta \sigma}_i$. When the slip distribution is tapered more smoothly than that for the uniform stress drop, the stress concentration (which is outside $\Sigma$ in the uniform stress drop models) partially occurs inside $\Sigma$. This creates a region of negative $\Delta \sigma_1$ inside $\Sigma$ and affects the area-averaged stress drop measure $\overline{\Delta \sigma}_i$. Therefore, how a rupture is arrested is important for the value of $\overline{\Delta \sigma}_i$.

In all cases studied, we find $\overline{\Delta \sigma}_E > \overline{\Delta \sigma}_M$; the theoretical proof of this relation is given in Appendix C. The relation $\overline{\Delta \sigma}_M > \overline{\Delta \sigma}_i$ holds for most cases but not always. For example, in cases for randomized uniform stress drop models described in the last section, $\overline{\Delta \sigma}_M$ is smaller than $\overline{\Delta \sigma}_i$ in about 50 per cent of the random cases.
so that the average of $\Delta \bar{\sigma}_M$ is approximately one. In order to have $\Delta \bar{\sigma}_M < 1$, we need concentration of large stress drop near the crack tip where $E(r)^2$ is smaller than in the central region (recall that $\Delta \bar{\sigma}_M$ is the average of $\Delta \bar{\sigma}_I$ using $E(r)^2$ as a weight function).

In the extreme case with $\Delta u_I$ being a boxcar function, $\Delta \bar{\sigma}_M$ would become infinitely large because of the singularity at the crack tip.

4 IMPLICATIONS FOR EARTHQUAKE SOURCE CHARACTERISTICS

4.1 Energy partitioning and constraints on shear stress evolution

In this section, we discuss the consequences of our findings on systematic differences between $\Delta \bar{\sigma}_E$ and $\Delta \bar{\sigma}_M$ for the values of radiation ratio obtained by Venkatakrishnan & Kanamori (2004) and then examine the implications of those values for shear stress evolution during earthquakes.

Venkatakrishnan & Kanamori (2004) computed the radiation ratio $\eta_R = E_r / \Delta W_0$ for large earthquakes ($M_a > 6.5$) and found that most of the earthquakes examined by them, except for tsunami earthquakes and a deep 1994 Bolivia earthquake, had $\eta_R$ ranging from 0.25 to 1. Their calculations used the seismologically estimated stress drops $\Delta \bar{\sigma}_M$). Note that $\eta_R$ can be expressed as

$$\eta_R = E_r / \Delta W_0 = \frac{2 \mu E_r}{\Delta \bar{\sigma}_E \Delta M_0}.$$  \hspace{1cm} (27)

Our finding that the energy-based $\Delta \bar{\sigma}_E$ that enters eq. (27) is always larger than the moment-based $\Delta \bar{\sigma}_M$ (Section 4.1, appendix C) suggests that the radiation ratios $\eta_R$ of large earthquakes may be even smaller than what was estimated by Venkatakrishnan & Kanamori (2004), and perhaps much smaller if the stress change distribution is quite heterogeneous. More significant heterogeneity in slip distributions would lead to larger $\Delta \bar{\sigma}_E$ in comparison to $\Delta \bar{\sigma}_M$, hence to more significant underestimation of the partial strain energy change $\Delta W_0$, and thus to more significant overestimation of $\eta_R$. (Note that small-scale slip heterogeneity is not resolvable by finite fault inversions.)

Note that any differences that exist between $\Delta \bar{\sigma}_E$ and $\Delta \bar{\sigma}_M$ because of the theoretically different averaging inherent in these quantities are in addition to any existing uncertainties in determining...
\( \Delta \sigma_f \) from seismic observations (Pavic et al. 2000; Allmenn & Shearer 2009). For example, if the uncertainty due to determining \( \Delta \sigma_f \) is a factor of up to 3 and the potential difference between \( \Delta \sigma_f \) and \( \Delta \sigma_f \) is a factor of up to 8, then the combined uncertainty factor in the energy arguments would be up to 24, which is more than an order of magnitude.

The conclusion of Venkataraman & Kanamori (2004) that radiation ratio \( \eta_r \) is typically smaller than 1 for typical large natural earthquakes—which is further strengthened by our results—can be used to restrict the range of potential scenarios for evolution of shear stress with slip during seismic events. While \( \eta_r < 1 \) is true for the simplified diagram of Fig. 3 by construction, \( \eta_r > 1 \) is theoretically allowed. This is because more energy than \( \Delta W_f \) can be available for radiation, if the dissipation on the fault is smaller than \( E_f \) (Section 1), as discussed in more detail in the following.

The radiated energy can be written as (Kostrov & Das 1988)

\[
E_r = \frac{1}{2} \int_S (\tau^m - \tau^i) \cdot \Delta u \, dS + \int_0^{\tau^m} \int_S \frac{dr}{dt} \cdot \delta dS
\]

\[
\approx \frac{1}{2} \int_S (\tau^m - \tau^i) \Delta u_1 \, dS + \int_0^{\tau^m} \int_S \frac{dr}{dt} \delta_1 dS,
\]

where \( \tau^m \) is the time when all wave-mediated processes are finished, and \( \tau \) and \( \delta \) are shear traction and slip vectors on the fault during the dynamic rupture process. In many cases, the slip vector is dominated by the component in the overall slip direction (e.g. Noda & Lapusta 2012) and we shall neglect the contribution from the other component in the following discussion. In eq. (28), the energy of new surface creation is absorbed in the frictional dissipation, which also includes the potential increased dissipation at the rupture tip analogous to fracture energy of singular crack theory. Multiplying both sides by the factor that converts \( E_r \) into \( \eta_r \) (eq. 27), we obtain

\[
\eta_r = 1 + \frac{2 \mu}{\Delta \sigma_f M_0} \int_0^{\tau^m} \int_S \frac{dr}{dt} \delta_1 dS.
\]

From eq. (29), whether \( \eta_r \) is larger or smaller than 1 depends on the sign of the integral, and hence on the sign of the time derivative of the local shear stress evolution, \( dr/dt \), if one makes a reasonable and general assumption that stress is positive. For example, if \( dr/dt \leq 0 \) for all non-negligible slips, then \( \eta_r \leq 1 \). A particular case of such behaviour is shown in the conceptual diagram of Fig. 3.

Of course, the sign of \( dr/dt \) may vary during dynamic rupture process, potentially resulting in \( \eta_r > 1 \). Recent experiments (e.g. Fukuyama & Mizooguchi 2009; Sone & Shimamoto 2009) suggested that fault resistance with slip may drop substantially to near-zero values and then substantially recover (restrengthen) as slip rates decrease at the end of the local slip. Such behaviour is sometimes advocated as the basis for pulse-like ruptures (e.g. Heaton 1990). Fig. 8(a) schematically reproduces one of the experimental curves (based on fig. 4 a in Sone & Shimamoto 2009). Since the sign of \( dr/dt \) varies during such behaviour and, in particular, is positive at the end of the slip when the values of slip are largest, the sign of the integral in eq. (29), and hence the relation of \( \eta_r \) to 1, is no longer clear for such scenarios.

Before analysing the energy balance for cases with variable \( dr/dt \) in more detail, using the scenarios of Fig. 8 as examples, let us briefly explain what the diagrams of Fig. 8 represent in terms of dynamic rupture process. Fig. 9 illustrates different stress quantities marked in Fig. 8. The shear stress on the fault is treated as a scalar quantity in Fig. 9 for simplicity. As the dynamic rupture propagates on the fault (Fig. 9a), the shear stress at a point varies (Figs 9b and c). Right before the dynamic rupture, the fault has prestress (or initial stress) \( \tau^i \). Slip initiates at a higher value of stress reached through stress concentration at the rupture front; we denote this stress value by \( \tau^m \). The stress level at the termination of slip at a point along the fault is denoted by \( \tau^e \). The final stress \( \tau^m \), after the passage of all waves, can be readjusted by the waves to be either higher or smaller than \( \tau^i \). The values of these stress quantities averaged over the fault based on energy considerations are denoted by adding overlines and, for two of them, subscripts \( E \), and marked in Figs 8 and 9(d). The average dissipative stress curves (solid lines in Figs 8 and 9d) are constructed so that (i) the area under the curve gives energy dissipation per unit fault area and (ii) the characteristic local features of the stress-slip behaviour are attempted to be preserved in the averaging. The averaging procedure that achieves these goals is described in Noda & Lapusta (2012). The ends of the virtual work rate, \( \tau^m_{\text{E}} \) and \( \tau^m_{\text{E}} \), are given by eqs (20) and (21).

It should be emphasized that the variation of shear stress at the fault points that have arrested—due to wave-mediated stress transfers from fault points that are still slipping—contributes to the integral in eq. (29), and hence such variation plays an important role in determining whether \( \eta_r \) exceeds 1 or not. On the other hand, the stress change before beginning of significant slip (e.g. stress concentration in front of rupture tip) does not contribute to the integral and thus does not affect the sign of \( \eta_r - 1 \). Hence, in different scenarios of stress versus slip behaviour, the sign of \( \eta_r - 1 \) can be changed by varying the final stress \( \tau^m_{\text{E}} \) but not the initial stress \( \tau^m_{\text{E}} \). However, for a given final stress \( \tau^m_{\text{E}} \), the initial stress \( \tau^m_{\text{E}} \) is constrained by other physical considerations, such as the requirements of the positive stress drop \( \Delta \sigma_f \) and the positive radiated energy \( E_r \).

In the experimentally-motivated scenario of Fig. 8(a), the radiation ratio \( \eta_r \) is larger than 1. The partial strain energy \( \Delta W_0 \) is given by the striped triangle, and it is clearly smaller than the radiated energy \( E_r \), given by the difference between the grey areas marked with ‘+’ and ‘-’. In terms of the integral of eq. (29), what we would find is that the positive contribution from the increasing dissipative stress at large slips overwhelms the negative contributions during fault weakening.

The scenario of Fig. 8(a) has the following characteristic features. The average prestress \( \tau^m_{\text{E}} \) and final stress \( \tau^m_{\text{E}} \) are close to each other, in the sense that their difference \( \Delta \sigma_f \) is much smaller than their magnitude. However, the typical dynamic resistance is substantially lower than either \( \tau^m_{\text{E}} \) or \( \tau^m_{\text{E}} \), representing significant dynamic weakening (and then restrengthening), and hence having substantial undershoot. To understand why such ‘substantially weakening-then-substantially strengthening’ scenario leads to \( \eta_r > 1 \), let us consider the idealized version of it (Fig. 8b), in which the dynamic resistance is constant at \( \tau_d \) and the transitions between the initial stress \( \tau^m_{\text{E}} \), the peak stress \( \tau_d \), the dynamic resistance \( \tau_d \) and the final stress \( \tau^m_{\text{E}} \) are achieved with negligible slip. Then \( \Delta W_0 \) is represented by the striped triangle in Fig. 8(b) and \( E_r \) is given by the much larger grey area, resulting in \( \eta_r \gg 1 \). In terms of formulae, we get

\[
\eta_r = \frac{E_r}{\Delta W_0} = \frac{(\tau^m_{\text{E}} - \tau^i_{\text{E}}) \pm \tau^i_{\text{E}} / 2 - \tau_d \Delta u_1}{\Delta \sigma_f \Delta u_1 / 2} = \frac{(\tau^m_{\text{E}} - \tau_d) + (\tau^m_{\text{E}} - \tau_d)}{\Delta \sigma_f} \gg 1,
\]
Figure 8. Schematic diagrams showing energy partitioning in different stress evolution scenarios. (a) Scenario based on laboratory experiments (Sone & Shimamoto 2009) which leads to $\eta_R > 1$. It is characterized by a small difference between the initial and final stresses compared to their difference with the typical dynamic frictional resistance. This leads to significant weakening at the beginning of slip followed by significant restrengthening at the end of slip. (b) The idealized version of such scenario, simplified by assuming negligible dissipation above the constant dynamic frictional resistance. (c)-(d) Scenarios with $\eta_R$ smaller than unity obtained from the case of panel a by reducing only $\tau_{\text{inj}}$ (panel c) or both $\tau_{\text{inj}}$ and $\tau_{\text{imp}}$ (panel d). The two cases result in different moment-based stress drop. (e)-(f) Streamlined versions of scenarios (c)-(d), in which the stress behaviour at the end of slip is simplified. The value of $\tau_{\text{imp}}$ for $\eta_R = 1$ is indicated by a star in panel e.
since \((\tau_{mE}^{in} - \tau_0) \gg \Delta \sigma_f^e \) and \((\tau_{mE}^{in} - \tau_0) \gg \Delta \sigma_f^e \) by construction of the scenario. Hence, the scenario in Fig. 8(b) (as well as 8a) contradicts the observations on radiation ratio.

Note that the behaviour illustrated in Figs 8(a) and (b) can occur on parts of the fault (i.e. for local shear stress as a function of local slip) without contradicting the observations on the radiation ratio, as long as such behaviour is compensated for by the behaviour at other fault locations, so that the average dissipation behaviour is different.

One can adjust the experimentally motivated scenario in Fig. 8(a) to result in \(\eta_R\) which is smaller than 1 without changing the overall shape, by adjusting the initial and final stresses \(\tau_{mE}^{in}\) and \(\tau_{mE}^{fin}\). Changing only \(\tau_{mE}^{in}\) (while keeping the same \(\tau_{mE}^{fin}\)) changes \(\eta_R\) but not the sign of \(\eta_R - 1\). This can be easily seen from the energy balance. Writing \(\Delta W = E_R + D\), where \(D\) is the total dissipation (including the increased dissipation at the rupture tip) and subtracting from both sides the dissipation \(E_R = \tau_{mE}^{fin} \Delta u A\) that would have occurred if slip were accumulated with the resistance equal to the final stress \(\tau_{mE}^{fin}\), we obtain

\[
\begin{align*}
\Delta W_0 &= E_R + (D - E_R) = E_R + (D - \tau_{mE}^{in} \Delta u A), \\
\eta_R &= 1 - (D - \tau_{mE}^{in} \Delta u A)/\Delta W_0.
\end{align*}
\]

From eq. (32), we clearly see that the sign of the second term depends on the sign of the difference between the actual dissipation \(D\) and the dissipation \(E_R\) that would have occurred if the stress during the entire rupture would be equal to the final stress. This difference does not depend on \(\tau_{mE}^{in}\), but clearly does depend on \(\tau_{mE}^{fin}\). The difference is trivially positive (and hence \(\eta_R < 1\)) for scenarios in which the dissipative stress is always above the final stress \(\tau_{mE}^{fin}\) (e.g. scenarios with overshoot). Eq. (32) can also be obtained from eq. (29) by integrating the second term by parts.

Hence, to achieve \(\eta_R < 1\) for the scenarios of Figs 8(a) and (b), we need to decrease the final stress \(\tau_{mE}^{fin}\) (Fig. 8c). In the idealized scenario of Fig. 8(b), the final stress \(\tau_{mE}^{fin}\) has to become smaller than the dynamic resistance \(\tau_0\), leading to overshoot, since \(\tau_{mE}^{fin} = \tau_0\) leads to \(\eta_R = 1\) in eq. (30). However, in the more general scenario of Fig. 8(a), the additional dissipation makes it possible to achieve \(\eta_R < 1\) without overshoot or with a mild undershoot. Fig. 8(c) shows a scenario where the radiated energy \(E_R\) is near-zero, and any further decrease in \(\tau_{mE}^{fin}\) would not be physical (as it would result in negative \(E_R\)). The position of \(\tau_{mE}^{fin}\) that would be the highest for the condition \(\eta_R < 1\) to hold is indicated by a star in Fig. 8(c).

The decrease in \(\tau_{mE}^{fin}\) would increase the difference between \(\tau_{mE}^{in}\) and \(\tau_{mE}^{fin}\), and hence lead to larger values of energy-based stress
drop $\Delta \sigma_E$. If the stress drop is relatively homogeneous, so that $\Delta \sigma_E$ is comparable to $\Delta \sigma_M$, then the stress drops may become too large compared to the observed values of the order of 1–10 MPa for large events (e.g., Kanamori & Anderson 1975). For example, if the shear stress on the fault is determined by ambient normal stress and hydrostatic pore fluid pressure, times the friction coefficient which decreases from typical peak values of 0.7 to low dynamic values of 0.1 due to high-velocity weakening, then the strength drop (the difference between the maximum and minimum of the dissipation rate) is of the order of 100 MPa. To avoid issues with stress drop, there are two possibilities. Either the slip distribution has to be relatively heterogeneous, so that $\Delta \sigma_E$ is much larger than $\Delta \sigma_M$. Or $\Delta \sigma_E$ is in fact of the order of 1–10 MPa, pointing to low overall strength and hence strength drop, for example, due to ambient fluid overpressure.

Scenarios similar to Figs 8(a) and (b) can achieve both $\eta_R < 1$ and smaller $\Delta \sigma_E$ than in Fig. 8(c) by lowering both $\tau^{\text{lim}}_E$ and $\tau^{\text{lim}}_E$ (Fig. 8d). In this scenario, the prestress $\tau^{\text{lim}}_E$ moves further away from the peak stress $\tau_p$, resulting in fault operation under lower overall stress than $\tau_p$, that may be comparable to the static strength. Such scenarios have been shown to favour pulse-like ruptures (e.g. Perriu et al. 1995; Zheng & Rice 1998; Noda et al. 2009).

Note that while the sign of $\eta_R - 1$ does not depend on the initial stress $\tau^{\text{lim}}_E$, the energy partitioning overall does. The upper bound for $\tau^{\text{lim}}_E$ is given by a situation in which the fault is uniformly loaded to just below $\tau^{\text{lim}}_E$ (at which slip would start). As $\tau^{\text{lim}}_E$ decreases from that upper bound, assuming the same $\tau^{\text{lim}}_E$, $\Delta W_E$ (and thus $\Delta \sigma_E$) decreases while the dissipation remains unchanged. The lower bound for $\tau^{\text{lim}}_E$ is given by either the condition $\eta_R > 0$ (positive radiation) or $\Delta \sigma_E > 0$ (positive stress drop).

In constructing the scenarios of Figs 8(c) and (d), we keep the same experimentally motivated stress-slip curve and simply move the initial and final stress levels, for illustration purposes. This procedure results in quite complicated behaviours at the end of the ruptures. Figs 8(e) and (f) show streamlined versions of these scenarios, in which the average stress at the termination of substantial slip, $\bar{\tau}_{\text{avg}}$, and the final state of stress on the fault, $\tau^{\text{lim}}_E$, are equal to each other. These simpler scenarios result in similar conclusions as those of Figs 8(c) and (d), since they have the same energy-based stress drops, and the modified parts of the energy balance are rather small. These streamlined versions make it clear that the case of Fig. 8(e) (as well as 8c) represents overshoot and the case of Fig. 8(f) (and 8d) represents a moderate undershoot, both of which are consistent with the observations on the radiation ratio.

An example of the averaged behaviour of shear stress with slip obtained in a dynamic rupture simulation is shown in Fig. 10. The dynamic rupture is simulated as a part of an earthquake sequence on a fault governed by a rate- and state-dependent friction, with additional dynamic weakening in the form of pore pressurization (Noda & Lapusta 2010b). This is the 7th event from fig. 8(b) of Noda & Lapusta (2010b). Note that the averaging of stress versus slip behaviour is done using the rigorous procedure described in Noda & Lapusta (2012), with the resulting average stress-slip curve reflecting the local stress versus slip behaviour on the fault whilst being scaled to preserve the dissipated energy and allowing for usual computations of strain energy change. The radiation ratio $\eta_R$ for this event is 0.52. Note that one does not need to compute areas in this case to verify $\eta_R < 1$, as the entire dissipative stress curve is above the final stress, and $\eta_R < 1$ directly follows from Eq. (32).
Figure 11. The dependence of $\Delta \sigma_{Mh}$ and $\Delta \sigma_{Mh}$ on the threshold $th$ in defining $\Sigma_{th}$ for randomized cases with $\nu = 1$ and $\chi = 0.3$ based on the circular crack model with uniform stress drop. At a certain value of $th$, $\Delta \sigma_{Mh}$ becomes equal to $\Delta \sigma_E$.

Figure 12. A contour plot of $th_c$ as a function of $\nu$ and $\chi$ for randomized cases based on the circular crack models with uniform stress drops. The value of $th_c$ is calculated every 0.1 in $\nu$ and 0.05 in $\chi$. The axes are the same as in Fig. 6.

We observe that, at a certain value of $th_c$, $\Delta \sigma_{Mh}$ becomes equal to $\Delta \sigma_E$. Let us denote this value of $th$ by $th_c$. If the ruptured domain is truncated using $th = th_c$, then $\Delta \sigma_{Mh}$ would approximate $\Delta \sigma_E$, and then $\Delta W$ and hence the radiation ratio eq. (27) would be estimated correctly. For the case shown in Fig. 11 ($\nu = 1$ and $\chi = 0.3$), $th_c$ has the mean value of 0.35, with the variance of 0.03, based on 100 random cases.

Fig. 12 shows the dependence of $th_c$ on the parameters of slip heterogeneity $\nu$ and $\chi$. For each parameter combination, the value of $th_c$ is determined based on averaging 100 random cases. We find that $0.2 < th_c < 0.4$ for a broad range of the heterogeneity parameters, both in circular and rectangular cases. Hence, using $th_c$ from that range for estimating the rupture area would be a reasonable choice for estimating stress drop values closer to the moment-based ones.

Note that the value of $th_c$ depends on other characteristics of the slip distribution such as $\phi$, the shape of $\Delta u$, before randomization. Fig. 13 shows the dependence of average stress drop measures on the threshold $th$ for different $\phi$. If $\phi$ reflects a characteristic feature of dynamic ruptures such as pulse-like propagation, the understanding...
of rupture dynamics would contribute to the estimation of \( \theta_h \) and hence to the estimation of the energy-based stress drop.

5 CONCLUSIONS

We have investigated three different approaches to averaging heterogeneous stress drop distributions following slip on a part of a planar interface and compared the resulting average stress drop measures: the moment-based \( \bar{\Delta} \sigma_M \), the area-based \( \bar{\Delta} \sigma_A \), and the energy-based \( \bar{\Delta} \sigma_E \). Theoretically, the three measures are given by averages of a stress drop distribution over the planar interface with different weighting functions: slip distribution of the corresponding uniform stress drop case for \( \bar{\Delta} \sigma_M \), the boxcar function (which restricts the averaging to the ruptured domain only) for \( \bar{\Delta} \sigma_A \), and the final slip distribution (which is potentially heterogeneous itself) for \( \bar{\Delta} \sigma_E \). Practically, \( \bar{\Delta} \sigma_M \) has been estimated from seismological observations in numerous studies, \( \bar{\Delta} \sigma_A \) gives the difference in the average stress levels before and after rupture, and \( \bar{\Delta} \sigma_E \) enters the calculations of partial strain energy change and radiation ratio (and hence considerations of energy partitioning).

To the best of our knowledge, this is the first study that explicitly introduces the energy-based average measure of stress drop, \( \bar{\Delta} \sigma_E \), although its notion has been indirectly implied by the developments in Kossov & Das (1988); Noda & Lapusta (2012). Unlike \( \bar{\Delta} \sigma_M \) and \( \bar{\Delta} \sigma_A \), \( \bar{\Delta} \sigma_E \) does not depend on the definition of the ruptured domain \( \Sigma \). Note that defining the ruptured domain in practice implies a criterion of what constitutes ‘significant’ slip, which is typically defined as a percentage of the maximum slip.

If the stress drop distribution is spatially uniform within the ruptured domain, the three average measures of stress drop are equal to each other. To compare the measures for non-uniform stress drop distributions, we consider both scenarios that are based on the uniform stress drop with a randomized addition, and scenarios that have different characteristic slip shape (non-elliptical). All scenarios have the same potency/moment, and hence the same \( \bar{\Delta} \sigma_M \). We find that the three measures of the average stress drop are similar to each other for small levels of heterogeneity. Furthermore, the difference between the moment-based \( \bar{\Delta} \sigma_M \) and area-based \( \bar{\Delta} \sigma_A \) remains within a factor of two for all cases we have investigated.

However, we find substantial differences between \( \bar{\Delta} \sigma_M \) and \( \bar{\Delta} \sigma_E \), by a factor of up to 8 for the cases considered. This means that using the seismologically inferred stress drops for energy considerations can lead to substantial errors, since the uncertainty in the seismological estimates of stress drops is now combined with another significant factor (up to 8 in this study), resulting in the combined uncertainty factor for the partial strain energy change of one order of magnitude or more.

Fortunately, we find that \( \bar{\Delta} \sigma_E \geq \bar{\Delta} \sigma_M \) always, the finding that we have proved theoretically. This means that using \( \bar{\Delta} \sigma_M \) in the estimation of the partial strain energy change \( \Delta W_E \) and radiation ratio \( \eta_R \) results in systematic understimation of \( \Delta W_E \) and hence systematic overestimation of \( \eta_R \). This result suggests that the radiation ratios obtained by previous studies (Venkataraman & Kanamori (2004)) for a number of earthquakes may be overestimated. For some earthquakes, Venkataraman & Kanamori (2004) used a trimmed rupture area for estimating the stress drop. In those cases, the stress drop estimate is closer to \( \bar{\Delta} \sigma_E \). However, their conclusion that most large earthquakes have the radiation ratio significantly smaller than one is further strengthened by our study, since the properly estimated values would be even smaller. Note that since the difference between \( \bar{\Delta} \sigma_E \) and \( \bar{\Delta} \sigma_M \) increases for more heterogeneous slip distributions, the radiation ratios would decrease for cases with small-scale slip heterogeneity (assuming the same potency). We would like to emphasize that values \( \eta_R > 1 \) are theoretically allowed, but should be quite rare based on the observations.

The observation that the radiation ratio is typically smaller than one can be used to constrain the range of potential scenarios of dissipative stress evolution with slip, averaged over the entire fault. All scenarios in which the average dissipative shear stress rate is negative with slip satisfy \( \eta_R < 1 \), as do scenarios in which the average dissipative stress stays at or above the final average stress (resulting in overshoot or no undershoot). Some scenarios with substantial restrengthening (undershoot) may violate this observation. In particular, the scenario with high initial and final stress levels in comparison with the dynamic frictional resistance has \( \eta_R \) much larger than unity. However, undershoot scenarios in which the final stress is sufficiently low still satisfy \( \eta_R < 1 \).

The seismological moment-based estimate of stress drop depends on the definition of the ruptured domain \( \Sigma \), which is uncertain in finite fault inversions due to areas of near-zero slip. Such areas may be present in inversions due to smoothing. If we define the ruptured domain by a threshold \( \theta_h \) with respect to the maximum slip, then the moment-based stress drop \( \bar{\Delta} \sigma_{M,\theta_h} \) increases with the value of \( \theta_h \). Selecting \( \theta_h \approx 0.3 \) results in a reasonable approximation to the energy-based stress drop \( \bar{\Delta} \sigma_E \) for a wide range of randomized cases based on uniform stress drop models that we have studied.

One interesting finding is that even the characteristic overall shape of the slip distribution (without any smaller scale randomization) already notably affects the differences between the three average stress drop measures, especially between moment-based \( \bar{\Delta} \sigma_M \) and energy-based \( \bar{\Delta} \sigma_E \). Features of dynamic rupture nucleation, propagation, and arrest (unilateral versus bilateral, crack-like versus pulse-like, abruptness of rupture arrest, etc) can be interpreted as factors determining the characteristic slip distribution (elliptic versus triangular versus trapezoidal, etc). Hence differences in earthquake physics can contribute to systematic differences between the three average stress drop measures.

Our results suggest that improving our understanding of slip distribution during earthquakes, including its heterogeneity, is quite important for better constraints on energy partitioning.

ACKNOWLEDGEMENTS

This study was supported by the National Science Foundation (grant EAR0548277), the Southern California Earthquake Center (SCEC), the Gordon and Betty Moore Foundation, and the Seismological Laboratory at Caltech. SCEC is funded by NSF Cooperative Agreement EAR-0166924 and USGS Cooperative Agreement 02HQAG0008. The SCEC contribution number for this paper is 1703. This is Caltech Tectonics Observatory contribution 225. We gratefully acknowledge the reviews by Drs. Massimo Cocco, Eiichi Fukuyama, Art McCarr, and an anonymous reviewer which helped us improve the manuscript.

REFERENCES


**APPENDIX A: EXPRESSION OF MOMENT-BASED STRESS DROP BY MADARIAGA 1979**

Madariaga (1979) discussed the relation between models of uniform and heterogeneous stress drop distributions and pointed out that the seismologically estimated stress drop is not, in general, equal to the area-averaged stress drop. The seismic moment tensor $M_{ij}$ is written as

$$M_{ij} = \mu \int_{S} (\Delta u_{ni} n_{j} + \Delta u_{nj} n_{i}) \, ds,$$  

(A1)
where $\Delta u$ and $n_i$ are the $i$th components of $\Delta u$ and the unit normal vector $n$ to the fault, respectively. By using the elastic reciprocity theorem, Madaraglia (1979) showed that $M_{ij}$ can be written in terms of stress drop distribution $\Delta \sigma(x_1, x_1)$ as

$$M_{ij} = \int \Delta \sigma \left( E_i^s + E_i^B \right) dS,$$  \hspace{1cm} (A2)

where $E_i^s$ is the $i$th component of the slip vector due to stress drop $\Delta T_{ij}$ on $\Sigma$ such that its $i$th component is given by $\Delta T_{ij} = \mu n_j n_i$.

In our study, the fault has a uniform unit normal vector $n = e_2$ (i.e., $n_1 = n_2 = 0$ and $n_3 = 1$), and the overall slip direction is $e_1$. In this case, the only non-zero components of the seismic moment tensor are

$$M_0 = M_{12} = M_{23} = \mu \int \Delta n_1 dS.$$  \hspace{1cm} (A4)

From eqs (A2) and (A3),

$$M_0 = \int \Delta n_1 E_i^s dS,$$  \hspace{1cm} (A5)

where $E_i^s (k = 1, 3)$ is the $i$th component of the slip distribution due to uniform stress drop by the shear modulus $\mu$ on $\Sigma$ in the direction of $e_i$.

Slip functions $E_i^s$ depend on the domain $\Sigma$. For a circular crack model with the radius $r$, one has (Eshelby 1957)

$$E_i^s = \frac{2A}{7r} \rho (1 - r^2/r^3)^{1/2}, \hspace{1cm} E_i^s = 0,$$  \hspace{1cm} (A6)

where $\rho$ is the radial coordinate measured from the centre of the crack. Note that the Poisson's ratio is assumed to be $1/4$. There is no known analytical expression of $E_i^s$ for rectangular crack models. Parsons et al. (1988) numerically calculated the slip functions for specific aspect ratios. In this study, we examine circular ruptured domains and rectangular ruptured domains with aspect ratios $\alpha = 1, 4$ and $16$. In the rectangular cases, we calculate $E_i^s$ numerically. Due to this, the quasi-dynamic rupture propagation calculations for a traction-free rupture domain with uniform initial stresses (Appendix B1).

Note that from eq. (A5), if the stress drop is uniform and equal to $\Delta \sigma_1$, then

$$\Delta \sigma = \frac{M_0}{\int E_i^s dS}.$$  \hspace{1cm} (A7)

In practice, even when the stress change on the fault is not uniform, seismologists often estimate a stress drop using eq. (A7). We call $\Delta \sigma_M$ moment-based or seismologically estimated stress drop. It follows from eqs (A5) and (A7) that $\Delta \sigma_M$ is given by

$$\Delta \sigma_M = \frac{M_0}{\int E_i^s dS} \times \frac{w dS}{w^2 dS}; \hspace{0.5cm} w = E_i^s.$$  \hspace{1cm} (A8)

where $w$ is the weighting function. The formulae eq. (4) are obtained by evaluating the spatial integrations in eq. (A7).

**APPENDIX B: RECTANGULAR RUPTURES**

**B1 Slip distributions for uniform stress drop models**

The slip distribution due to a uniform stress drop over a certain region is a solution to a mixed boundary-value problem. The analytic solution for such a problem is not always known. The analytic solution for a 2-D planar crack was derived by Starr (1928), and the solutions for the circular and elliptical cracks were derived by Eshelby (1957). Parsons et al. (1988) calculated solutions for rectangular cracks with different aspect ratios and burial depth using a finite element method and then derived formulae similar to eq. (6). Those results have been widely used in estimation of stress drops in seismology.

In this work, slip distributions $\phi_1$ and $\phi_2$ for rectangular ruptures with uniform stress drop have been computed by conducting quasi-dynamic simulations using the spectral boundary integral method (Rice 1983). Adaptive time stepper is used which minimizes the $L_2$ norm of the slip rate (or, equivalently, traction in the quasi-static problem) inside the ruptured domain $\Sigma$. Let us select the reference state of linear elasticity such that no slip corresponds to zero shear stress on the fault $\Sigma$, and assume uniform stress drop $\mu$ inside $\Sigma$. At the $n$th step, we have a slip distribution $(\phi_{1(n)}, \phi_{2(n)})$ inside $\Sigma$. The static stress field $(f_{1(n)}, f_{2(n)})$ due to that slip distribution is calculated using eq. (25) as

$$\begin{bmatrix} f_{1(n)} \\ f_{2(n)} \end{bmatrix} = \frac{\mu}{2k} \begin{bmatrix} k_2^2 (1 - \nu) + k_1^2 & k_1 k_2 \nu (1 - \nu) \\ k_1 k_2 \nu (1 - \nu) & k_1^2 + k_2^2 (1 - \nu) \end{bmatrix} \begin{bmatrix} \phi_{1(n)} \\ \phi_{2(n)} \end{bmatrix},$$  \hspace{1cm} (B1)

where $k_1$, $k_2$ are the wave number vector $(k_1, k_2)$, $k$ is the absolute value of that vector, and $\nu$ is Poisson's ratio which is assumed to be $1/4$. Note that similarly to the main part of this paper, we assume spatial periodicity with the period which is four times larger than the rupture length. From the quasi-dynamic approximation (Rice 1990), the corresponding slip rate $(V_{1(n)}, V_{2(n)})$ is

$$\begin{bmatrix} V_{1(n)} \\ V_{2(n)} \end{bmatrix} = \frac{1}{\eta} \begin{bmatrix} f_{1(n)} \\ f_{2(n)} \end{bmatrix} - \begin{bmatrix} -\Delta \sigma_1 \\ 0 \end{bmatrix},$$  \hspace{1cm} (B2)

where $\eta = \mu/(2c_0)$. The stress drop distribution is:

$$\Delta \sigma_1 = \begin{cases} \mu & \text{inside } \Sigma \\ 0 & \text{outside } \Sigma \end{cases}$$  \hspace{1cm} (B3)

The rate of change of the static stress field is

$$\begin{bmatrix} f_{1(n)} \\ f_{2(n)} \end{bmatrix} = \frac{\mu}{2k} \begin{bmatrix} k_2^2 (1 - \nu) + k_1^2 & k_1 k_2 \nu (1 - \nu) \\ k_1 k_2 \nu (1 - \nu) & k_1^2 + k_2^2 (1 - \nu) \end{bmatrix} \begin{bmatrix} \phi_{1(n)} \\ \phi_{2(n)} \end{bmatrix},$$  \hspace{1cm} (B4)

In an explicit time integration with a time step $\Delta t_n$, the distributions of slip and static stress are updated as

$$\begin{bmatrix} \phi_{1(n+1)} \\ \phi_{2(n+1)} \end{bmatrix} = \begin{bmatrix} \phi_{1(n)} \\ \phi_{2(n)} \end{bmatrix} + \Delta t_n \begin{bmatrix} V_{1(n)} \\ V_{2(n)} \end{bmatrix},$$  \hspace{1cm} (B5)

$$\begin{bmatrix} f_{1(n+1)} \\ f_{2(n+1)} \end{bmatrix} = \begin{bmatrix} f_{1(n)} \\ f_{2(n)} \end{bmatrix} + \Delta t_n \begin{bmatrix} f_{1(n)} \\ f_{2(n)} \end{bmatrix}.$$  \hspace{1cm} (B6)

In order to minimize the norm of the mismatch in the static stress field at the $(n+1)$th step:

$$L_2 = \sum_{(x_1,x_2) \in \Sigma} \left( (f_{1(n+1)} + \mu)^2 + f_{2(n+1)}^2 \right),$$  \hspace{1cm} (B7)
the time step $\Delta t_{i}$ is selected such that

$$\Delta t_{i} = \frac{\sum_{(x_{1}, x_{2})} \left[ (f_{i}(x_{1}) + \mu) (f_{i}(x_{1}) + f_{i}(x_{2})) \right]}{\sum_{(x_{1}, x_{2})} \left[ f_{i}(x_{1})^2 + f_{i}(x_{2})^2 \right]}$$

(B8)

The series of slip distributions $(\phi_{1}(x_{1}), \phi_{2}(x_{2}))$ $(n = 1, 2, 3, \ldots)$ is not meant to be an approximation of any physical process but rather this is a way to converge to the static solution. We iterate this step until the maximum value of $|f_{i}(x_{1}) + \mu|$ becomes smaller than $10^{-4}\mu$.

Fig. B1 shows the resulting slip distributions in the uniform stress drop models for rectangular ruptures with the aspect ratios $\alpha = 1, 4$, and 16. $\phi_{1}$ is not uniformly zero, although its amplitude is much smaller than that of $\phi_{1}$. Note that $E_{12}^{i}$ is equal to $(\phi_{1}, \phi_{1})$. Spatial integration of $E_{12}^{i2}$ yields $C = 2.53, 3.02$ and 5.21 in eq. (A8) for $\alpha = 1, 4$ and 16, respectively. Our calculation agrees with Parsons et al. (1988) who reported $C = 2.55$ for a square rupture (i.e. $\alpha = 1$) based on a finite-element calculation. Because we assume spatial periodicity (with the size of the repeated domain four times larger than the ruptured domain) and Parsons et al. (1988) assumed large enough burial depth, our estimation of $C$ is expected to be smaller because of the stress concentration due to periodic replications. The mismatch is negligibly small, and the comparison between different averaged stress drops is not affected by the existence of periodicity.

**B2 Effect of randomization for rectangular ruptures**

The rectangular uniform stress drop models described in the previous appendix are randomized using the same approach as for the circular ruptures, based on eq. (23). Figs B2, B3 and B4 show distributions of $\Delta \mu_{i}$ and $\Delta \sigma_{i}$ for the rectangular domains with aspect ratios $\alpha = 1, 4$ and 16, respectively.

Fig. B5 shows $\Delta \sigma_{i}/\Delta \sigma_{M}$ for rectangular cases. Similarly to the circular cases, introduction of heterogeneity increases $\Delta \sigma_{i}/\Delta \sigma_{M}$ from 1. As $\alpha$ increases, $\Delta \sigma_{i}/\Delta \sigma_{M}$ becomes less dependent on $\chi$ at large $v$. This can be explained by the following consideration. If a Fourier mode with much a longer wavelength than the width of the rupture is dominant along the rupture length (e.g. the cases with
\( \nu = 2 \) and \( \alpha = 16 \) shown in Fig. B4), then the distributions of slip and stress drop can be approximated by

\[
\Delta u_1 \approx \frac{\Delta \sigma_m}{\mu} \phi_1[1 + \epsilon \sin(k_x x_1 + c)],
\]

(B9)

\[
\Delta \sigma_1 \approx \Delta \sigma_m [1 + \epsilon \sin(k_x x_1 + c)],
\]

(B10)

where \( \epsilon \) is the amplitude of the sinusoidal perturbation and \( c \) is a constant. In this approximation, \( \Delta \sigma_m \) becomes

Therefore, if \( \nu \) is large enough so that only the long wavelength components parallel to domain lengths are significant, \( \Delta \sigma_m \) is expected to be near \( \Delta \sigma_m \).

The threshold values for truncating the ruptured domain so that the moment-based stress drop becomes a good approximation of the energy-based one are shown in Fig. B6. The results suggest that \( \theta_c \sim 0.2 \) unless the slip distribution is very heterogeneous, similarly to the circular models, although it should be noted that \( \theta_c \) depends on the characteristic slip distributions \( \phi_1 \) and \( \phi_2 \).

Figure B2. Examples of distributions of (a) \( \Delta u_1 \) and (b) \( \Delta \sigma_1 \) for randomized models based on square ruptured domains with uniform stress drop. The number at the bottom right of each panel indicates the maximum value of the quantity plotted. The sides of the square and the potency are normalized to one.
Figure B3. Examples of distributions of (a) $\Delta u_1$ and (b) $\Delta \sigma_1$ for randomized models based on rectangular ruptured domains (aspect ratio $\alpha = 4$) with uniform stress drop. The number at the bottom right of each panel indicates the maximum value of the quantity plotted. The shorter sides of the rectangular and the potency are normalized to one.

Figure B4. Examples of distributions of (a) $\Delta u_1$ and (b) $\Delta \sigma_1$ for randomized models based on rectangular ruptured domains (aspect ratio $\alpha = 16$) with uniform stress drop. The number at the bottom right of each panel indicates the maximum value of the quantity plotted. The shorter sides of the rectangular and the potency are normalized to one.
APPENDIX C: PROOF OF $\overline{\Delta \sigma_F} \geq \overline{\Delta \sigma_M}$

First, let us point out that partial strain energy change is a non-negative quantity. From eq. (17), the partial strain energy change $\Delta W_0$ is a function of slip distribution $\Delta u$,

$$\Delta W_0 = \frac{1}{2} \int_\Sigma \Delta \sigma \cdot \Delta u \, dS,$$  

(C1) 

where $\Delta \sigma$ is a linear function of $\Delta u$ given by eq. (25). $\Delta W_0$ is the volume integral of the strain energy density distribution due to $\Delta u$ added to the stress-free configuration,

$$\Delta W_0 = \int_V W(\Delta \epsilon) \, dV,$$  

(C2)
where $\Delta \varepsilon$ is the strain distribution due to $\Delta u$ on the fault and $W$ is the strain energy function. Because $W$ is positive definite, $\Delta W_0$ is non-negative for any $\Delta u$,

$$\Delta W_0(\Delta u) \geq 0 \quad \text{for all } \Delta u \quad \text{(C3)}$$

Any slip distribution can be expressed as a sum of a uniform stress drop model and the deviation from it which has zero potency.

Let us consider a uniform stress drop model, with $\Delta u_s$ and $\Delta \sigma_{eq}$, and a perturbation to it, $\Delta u_p$ and $\Delta \sigma_p$ such that the support of $\Delta u_p$ is $\Sigma$ and the seventh term of the perturbation is zero,

$$\int_\Sigma \Delta u_p \, dS = 0 \quad \text{(C4)}$$

All the other conventions are the same as in the problem setup of Section 2. The partial strain energy changes due to $\Delta u_s$ and $\Delta u_p$ separately are given by

$$\Delta W_{0s} = \frac{1}{2} \int_\Sigma \Delta \sigma_{eq} \cdot \Delta u_s \, dS \geq 0 \quad \text{(C5)}$$

and

$$\Delta W_{0p} = \frac{1}{2} \int_\Sigma \Delta \sigma_p \cdot \Delta u_p \, dS \geq 0 \quad \text{(C6)}$$

The partial strain energy change due to the sum of the uniform stress drop model and the perturbation is

$$\Delta W_{0sp} = \frac{1}{2} \int_\Sigma (\Delta \sigma_{eq} + \Delta \sigma_p) \cdot (\Delta u_s + \Delta u_p) \, dS$$

$$= \Delta W_{0s} + \Delta W_{0p} + \frac{1}{2} \int_\Sigma \Delta \sigma_{eq} \cdot \Delta u_p \, dS$$

$$+ \frac{1}{2} \int_\Sigma \Delta \sigma_p \cdot \Delta u_s \, dS. \quad \text{(C7)}$$

Because $\Delta \sigma_{eq}$ is uniform and the perturbation has zero potency (eq. C4), the third term in eq. (C7) is zero,

$$\frac{1}{2} \int_\Sigma \Delta \sigma_{eq} \cdot \Delta u_p \, dS = \frac{1}{2} \Delta \sigma_{eq} \cdot \int_\Sigma \Delta u_p \, dS = 0. \quad \text{(C8)}$$

Using the elastic reciprocity theorem, the fourth term is identical to the third term which is zero,

$$\frac{1}{2} \int_\Sigma \Delta \sigma_p \cdot \Delta u_s \, dS = \frac{1}{2} \int_\Sigma \Delta \sigma_p \cdot \Delta u_p \, dS = 0. \quad \text{(C9)}$$

Therefore, eq. (C7) leads to

$$\Delta W_{0sp} = \Delta W_{0s} + \Delta W_{0p}. \quad \text{(C10)}$$

Because of the non-negativeness of $\Delta W_{0p}$ (eq. C3), we can conclude,

$$\Delta W_{0sp} \geq \Delta W_{0s}. \quad \text{(C11)}$$

This means that if the support of the slip distribution and the potency (or the seismic moment) is preserved, then the uniform stress drop model minimizes the partial strain energy change $\Delta W_s$.

Now let us use this result to compare $\Delta \sigma_{eq}$ and $\Delta \sigma_M$ for the case with slip distribution $\Delta u_{eq} = \Delta u_s + \Delta u_p$. From eq. (18), one has

$$\Delta W_{0sp} = \frac{1}{2} \Delta \sigma_{eq} \cdot \Delta u_{eq} \, dS = \frac{1}{2} \Delta \sigma_M \cdot \Delta u_{eq} \, dS. \quad \text{(C12)}$$

The second equality in eq. (C12) holds because the cases with $\Delta u_{eq}$ and $\Delta u_s$ have the same potency/moment (by construction); this also means that they have the same moment-based stress drop $\Delta \sigma_M$. Furthermore, for the uniform stress drop case with $\Delta u_s$, all three average measures of stress drop considered in this study are equal, and hence the moment-based stress drop can be used to find $\Delta W_{0s}$,

$$\Delta W_{0s} = \frac{1}{2} \Delta \sigma_M \cdot \Delta u_s \, dS. \quad \text{(C13)}$$

Eqs (C11), (C12) and (C13) immediately yield

$$\Delta \sigma_M \geq \Delta \sigma_M. \quad \text{(C14)}$$