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SUMMARY

Stress drop, a measure of static stress change in earthquakes, is the subject of numerous
investigations. Stress drop in an earthquake is likely to be spatially varying over the fault,
creating a stress drop distribution. Representing this spatial distribution by a single number,
as commonly done, implies averaging in space. In this study, we investigate similarities and
differences between three different averages of the stress drop distribution used in earthquake
studies. The first one, Aoy, is the commonly estimated stress drop based on the seismic
moment and fault geometry/dimensions. It is known that Aoy, corresponds to averaging the
stress drop distribution with the slip distribution due to uniform stress drop as the weighting
function. The second one, Ao 4, is the simplest (unweighted) average of the stress drop
distribution over the fault, equal to the difference between the average stress levels on the fault
before and after an earthquake. The third one, Ao, enters discussions of energy partitioning
and radiation efficiency; we show that it corresponds to averaging the stress drop distribution
with the actual final slip at each point as the weighting function. The three averages, Ao y,
Ao 4, and Ao f, are often used interchangeably in earthquake studies and simply called ‘stress
drop’. Yet they are equal to each other only for ruptures with spatially uniform stress drop,
which results in an elliptical slip distribution for a circular rupture. Indeed, we find that other
relatively simple slip shapes—such as triangular, trapezoidal or sinusoidal—already result in
stress drop distributions with notable differences between Aoy, Ao 4, and Ao ;. Introduction
of spatial slip heterogeneity results in further systematic differences between them, with Aoy,
always being larger than Aoy, a fact that we have proven theoretically, and Ao 4 almost always
being the smallest. In particular, the value of the energy-related Ao, significantly increases
in comparison to the moment-based Ao, with increasing roughness of the slip distribution
over the fault. Previous studies used Ae 4 in place of A, in computing the radiation ratio
that compares the radiated energy in earthquakes to a characteristic part of their strain energy
change. 'lypical values of 5 for large earthquakes were found to be from 0.25 to 1. Our finding
that Ao ; > Aoy allows us to interpret the values of 5y as the upper bound. We determine
the restrictions placed by such estimates on the evolution of stress with slip at the earthquake
source. We also find that Ao ; can be approximated by Aoy if the latter is computed based
on a reduced rupture area.

Key words: Earthquake dynamics; Dynamics and mechanics of faulting; Fractures and faults.

rameter which has long been studied in seismology (e.g. Knopoff
1958; Kanamori & Anderson 1975; Abercrombie 1995; Allmann
Since carthquakes lead to the overall reduction of stress on the & Shearer 2009). Most investigations report a single value for the
ruptured fault domain, stress drop is an important physical pa- stress drop in an earthquake. Such a single value of stress drop for
the entire rupture can be interpreted unambiguously only when the
stress drop is constant (i.e. spatially uniform) over the ruptured do-
main (Figs la and b). In real earthquakes, the stress drop most likely
varies locally over the ruptured fault domain (e.g. Bouchon 1997),

1 INTRODUCTION
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ku, Yokohama, Kanagawa, 236-0001 Japan creating a spatially varying siress drop distribution. A synthetic
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Figure 1. |lustration of slip distributions and the corresponding stress drop
distribufions for the cases of uniform and non-uniform stress drops. Yel-
low and red colours indicate positive values, whereas blue colours indicate
negative values. (a) Slip distribution of a circular crack model with uniform
stress drop. (b) The resulting stress drop distribution is uniform within the
slipped circular region, with the negative stress drop (or stress increase)
outside the slipped region. (c) An example of a randomized slip distribution
(see Section 3.1 for details). (d) The corresponding heterogeneous stress
drop distribution.

example of variable stress drop over the fault is shown in Fig. 1(d).
This stress drop distribution is obtained by first constructing a ran-
domized shp distnbution motivated by observations of earthquake
shp (Manighetti ef al. 2005; Lavallée ef al. 2006) by the method
described in Section 3.1 (Fig. 1¢), and then computing the resulting
stress drop distribution using linear elasticity (Fig. 1d). Represent-
ing such a heterogeneous stress drop distribution by a single value
inevitably implies some averaging in space.

Three notions of the average static stress drop are interchangeably
used in earthquake studies, yet would be different for heterogeneous
stress drop distributions. The first one, which we denote by Aoy,
1s the commonly estimated static stress drop based on the seismic
moment and fault geometry/dimensions (Section 2.1). The second
one, Ao, is the difference between the average stress levels on
the fault before and after an earthquake (Section 2.2). It enters, for
example, estimates of the time needed for the area to be stressed
to the average stress level that existed before the earthquake. The
third one, Ao g, is used in studies of energy partitioning and radi-
ation efficiency (c.g. Venkataraman & Kanamori 2004; Kanamori
& Rivera 2006) as discussed in Section 2.3. The three quantities,
Ad 1, A 4 and Ag g, are almost always used interchangeably and
simply called ‘stress drop’. Yet they are equal to each other only
for ruptures with spatially uniform stress drop within the ruptured
domain, which results in an elliptical slip distribution for a circular
rupture, as shown in Figs 1(a) and (b). Note that even the uniform
stress drop case 1s not completely umform overall, since the shp
varies within the ruptured domam—with elliptical shape for the
circular domain, other shapes for other geometries—and the stress
is actually increased outside the ruptured domain.

For spatially heterogeneous stress drop distributions, of the kind
shown in Figs 1(c) and (d), Ay, Ac, and Ao, would not be
the same in general since they correspond to different averaging

of the stress drop distribution. Ad y, corresponds to averaging the
stress drop distribution with the shp distribution due to uniform
stress drop as the weighting function (Madariaga 1979, Section 2.1,
appendix A). Ao 4 represents the simplest (unweighted) average of
the stress change over the ruptured domain (Section 2.2). Finally,
‘A i; corresponds to averaging the stress drop distribution with the
actual final slip at each point as the weighting function, as implied by
the developments in Noda & Lapusta (2012) and shown in Section
2.3. To the best of our knowledge, this is the first study that explicitly
mtroduces this energy-based average measure although its notion
has been indirectly implied by Kostrov & Das (1988).

Hence it 1s important to understand how the seismologically es-
timated stress drops Aoy are related to the area-averaged stress
drops Ao, and energy-related stress drops Ao ;. In this study, we
investigate this 1ssue by creating synthetic heterogeneous slip sce-
narios motivated by natural earthquakes (Manighetti ef al. 2005;
Lavallée et al. 2006) and comparing the three average stress drop
measures Ay, Ao, and Aa for these scenarios (Section 3).
We find significant and systematic differences between these three
average stress drop measures. The significance of our results for
earthquake source physics is discussed in Section 4. We summarize
our main findings in Section 5.

Note that the extent and nature of slip and stress heterogene-
ity on faults is a subject of active study and debate. In this work,
heterogeneous slip distnibutions are generated by randomizing an
assumed characienstic slip distnbution in a manner motivated by
the 2-D stochastic model by Lavallée ef al. (2000). As discussed by
Lavallée et al. (2006) and detailed in Section 3.1, the representation
of'slip heterogeneity in the model is based on the assumption that the
seismic process is length scale-independent for a wide but truncated
range (also see Andrews 1980). Due to physical processes acting
during dynamic rupture, the slip heterogeneity may have different
properties than assumed here, and, in particular, be scale-dependent
(e.g. Cocco & Tinti 2008). Note that we also explore the effect
of the charactenistic shape of slip distribution which may result
from the physics of the dynamic rupture process, making the slip
distributions we consider not fully stochastic. The heterogeneous
shp distributions we use serve as representative examples of how
heterogeneity can affect the siress drop averages used n different
applications. The developed procedures can be applied for deter-
mining effects of other representations of heterogeneity on average
stress drop measures.

2 AVERAGE STRESS DROP MEASURES
FOR HETEROGENEOUS STRESS
CHANGE DISTRIBUTIONS

First, let us define the mathematical quantities needed to describe
slip in an earthquake, the resulting stress drop distribution and its
averaging. Let us consider stress changes due to rupture of a planar
fault § embedded in a linear elastic infinite homogeneous medium
(Fig. 2). We define a 3-D coordinate vector x with the unit basis
vectors denoted by e, > and es. Without loss of generality, let the
fault § coincide with the x; — x; plane so that e, 1s normal to §. The
mmitial distribution of the traction on § is denoted by 7 ni(x,, x1). An
earthquake produces slip distribution Au(x, x3), and the traction
on § changes to 7™(x,, x,). Without loss of generality, let us choose
e, to coincide with the overall slip direction (the direction parallel to
the integral of Au(x,, x;) over S). Note that we are not considering
fault opening; hence Aus(x, x3) = 0 and Aw is perpendicular to e,.
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Figure 2. A schematic diagram illustrating definitions of variables in this study.

The (vector) distribution of stress drop on §, Ao(x),x;), is
defined as

Ao (x),x3) = Tﬁn(xl,xs}- (1)

Note that Ao z(x;, x3) = 0. Representing this stress drop distribution
as a single scalar quantity implies averaging Ag in a particular way.
Often, the averaging is desired over the ruptured domain X, which
is defined as the domain with non-zero slip,

S =[xeS | Au(x)|0}. (2)

In practice, it is difficult to determine X accurately from seismo-
logical observations because of band-limitedness and smoothing in
selecting a solution (e.g. Harris & Segall 1987; Hatzell ef al. 1996).
Furthermore, in numerical forward simulations of dynamic rupture,
some frictional constitutive laws (e.g. a rate- and state-dependent
friction law by Dieterich 1979) predict mathematically non-zero slip
everywhere on §. Hence, let us define a truncated ruptured domain,
in which we include only those regions where slip exceeds a given
fraction th of the maximum slip,

T o= (x| Au(x) > th max( Au )). (3)

Note that £, = X atth = 0.

Both the slip distribution Au(x), x;) and the stress drop distri-
bution Aa(x,, x3) are vectors with two non-zero components, in
the fault-defining directions ¢, and e;. In many situations, slip in a
single direction dominates, and in this study, this would be the over-
all slip direction ;. Hence, while the various averaged quantities
are defined below in terms of the vector distributions Aw and Ac,
components Au; and Ag; often dominate, and the terms with the
other component can often be ignored.

2.1 Averaging of stress drop distribution based
on seismic moment

Seismological estimates of average stress drop are based on the
seismic moment My, and fault geometry/dimensions. In the case
of faults with characteristic dimension p = A'2, the following
expression is used (e.g. Kanamori & Anderson 1975; Parsons ef al.

1988):

M M,
Acy _C—° Y i
A.l,u.

where A is the ruptured area and C depends on the shape of the
ruptured domain, for example, C = 2.44 for a circular ruptured
domain (or crack) and C = 2.53, 3.02 and 5.21 for rectangular
cracks with aspect ratios @ = 1, 4 and 16, respectively. For the
determination of C in the rectangular cases, see Appendix B1. M|,
can be well estimated from long-period waves, and the characteristic

4)

dimension p = A'/ can be estimated from seismic observations
under certain assumptions, such as a relationship between the corner
frequency and the length scale of the rupture (e.g. Aki 1967; Brune
1970; Madariaga 1976). In this study, we call such stress drop
estimates moment-based or seismologically estimated.

If the actual stress drop is uniform over the ruptured domain,
Ac 4 is equal to that uniform value. If the actual stress drop is
heterogeneous, given by the distribution Ao (xy, x3), then Aa
gives a weighted average of Ao (x;, x3). The average 1s weighted
by the slip distribution E'? due to the uniform stress drop in the
overall ship direction ¢, over the same ruptured domain,

s [ Aa - E_'2 ds
Jse - E"dS
[ AciE]? + Aoy E? dS
' [ EZds
Ji Ao -wdS
" fye-wdS

where w is a weighting function. This relation was established by
Madariaga (1979), as reviewed in Appendix A.

Since the overall slip is in the direction of e/, the term in eq. (5)
with E? is expected to dominate. If the effect of E1? is negligible
(as is the case for circular ruptures, for example), then Agy, is
actually the average of the non-uniform stress change distribution
Ao | weighted by the slip function E|?. For circular ruptures, E|’
has an elliptical shape, peaking in the middle of the ruptured domain
% and going to zero at the boundaries of it. Hence this moment-
based averaging would emphasize stress changes in the middle of
the ruptured domain.

Note that an accurate determmation of the ruptured domain %
1s difficult in practice as mentioned in the previous section. For
example, smoothness constraints in finite fault inversions result
in areas of near-zero slip that are often poorly constrained (e.g.
Somerville ef al. 1999). Such arcas would affect the extent of the
rupture and hence the stress drop estimate Ag . To study this
effect, we use the definition of the truncated ruptured domain eq.
(3) to define the corresponding threshold-dependent moment-based
average stress drop Aa ; given by

M,

Aoy = CW ) ()

th

;w=E", (5)

where Ay, 1s the area of 2. ¥, can have a complex shape if the
ship distnibution is heterogeneous. To enable comparison to the seis-
mologically estimated stress drops, we do not attempt to compute
C for the actual complex shapes, rather using the value of C for
the original (circular or rectangular) domain. Hence Ao sy in eq.
(6) depends both on the shape of the original ruptured domain that
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determines C and on the threshold th. For further discussion, sce
Section 4.2. Note that Somerville ef al. (1999) suggested a related
but somewhat different criterion to reduce the rupture area based
on slip; in their case, the domain was trimmed from outside so that
it retained the rectangular shape.

2.2 Spatial average of stress drop distribution

The seismologically estimated stress drop is sometimes intuitively
interpreted as the spatially averaged stress drop. There are several
studies comparing the seismologically estimated stress drops and
stress drops obtained in one-degree-of-freedom systems such as
spring-slider systems and laboratory frictional experiments (e.g.
Marone 1998; He et al. 2003). The former values are determined
through a rather complex averaging procedure as already discussed,
while the latter values are simple spatial averages over the simulated
fault which 1s assumed to undergo umiform shp. Although such
comparisons may be valid under certain conditions, it 1s important
to understand what those conditions are.
The spatially averaged stress drop can be expressed as
[z Ao dS  [(Ac-wdS e (xeX)

Ao, = = Cw = .
A A Jfoer-wdS 0  otherwise

(M

Hence, it is the average of stress change distribution Ag using a box-
car function as the weighting function. Madariaga (1979) pointed
out that the area-averaged stress drop Ac 4 is different from the
seismologically estimated stress drop A .

Note that Ao depends on the ruptured domain X, just like Aoy
If ¥ includes regions of near-zero slip, Ao 4 decreases. Indeed, if’
stress change 1s averaged over the entire infinite plane, the average
is going to be zero. Using the area approximation in eq. (3), we can
define

[, Ao dS _ [yAo-wdS e (x€ZXy)

= T w= "
At Jyer-wdS 0  otherwise

(®)

AC qn =

where the stress drop is averaged over the sub domain X ;.

2.3 Averaging stress drop distribution based on
energy considerations

One of the important uses of siress drop for earthquake physics 1s
m studies of energy partitioning (e.g. Venkataraman & Kanamon
2004; Kanamori & Rivera 2006). Here, we consider the average
Aaj; of the stress drop distribution Aa(x;, x3) that would be rig-
orously consistent with that usage, and show that it corresponds to
averaging the stress drop distribution with the actual final slip Au
at each point as the weighting function,

v _ JyAg - AudS [ Ao -wdS
0= fou.db' - fs.el-wds

s w=Au. (9)

Clearly, this expression is different from that for the moment-based
stress drop average Ag ;. As for Aoy and Ac 4, the components
of stress drop and slip in the overall slip direction e, often dominate,
in which case the expression simplifies to

— fr‘ ﬂo‘;ﬁlﬂ ds

Aoy = : 10
aE j: Au,dS (10)
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Figure 3. (a) A conceplual simplilied diagram for energy partitioning in an
earthquake, The marked guantities are explained in the text. (b) A one degree
of freedom spring-slider-dashpot model for which the energy partitioning
diagram in (a) is rigorously valid.

To understand why this is the relevant stress drop average, let us
review the basics of energy partitioning studies, which are typically
done in the context of a simplified conceptual diagram (Fig. 3). In
the diagram, the stress on the fault drops from the initial value z'™
to the final value ™ through slip D, and then the slip proceeds ata
constant stress T"" until it stops. A number of assumptions are made
in this conceptual case; in particular, the imtial and final stresses
on the fault are assumed to be identical to the shear stress at the
onset of slipping and that at the residual level, respectively. This
assumption cannot be exactly true for finite-fault ruptures. First, the
mitial average stress before the rupture event 1s likely smaller than
the shear stress at the onset of slipping. Secondly, the final average
stress can also be different from the residual sliding resistance due
to overshoot or undershoot (e.g., McGarr 1999; Kanamori & Rivera
2006). More realistic diagrams have been studied (e.g. Cocceo et al.
2006), but let us consider this idealized case to introduce the devel-
opments of earlier studies (e.g. Venkataraman & Kanamori 2004;
Kanamori & Rivera 2006).

The total strain energy release AW is given by

ini 4 lin

AW:?EA, (11)

where Au is the average slip. If D. = 0, the energy dissipated on the
fault plane 1s Ey = ™ Au A and the difference between AW and
Eﬁ 15 gi\«’i‘:l'l by

AW, = %AGEA, (12)
where Ag = o™ — ¢fi",

In previous studies (e.g. Venkataraman & Kanamor 2004;
Kanamon & Rivera 2006), A W, was called ‘the available energy’,
in the sense that it is the energy available for seismic radiation and
any further dissipation. In a more general energy release process
(e.g. an undershoot case where the stress on the fault plane during
faulting becomes smaller than the final stress 7, as discussed in
Section 4.1), the dissipation on the fault can, in fact, be smaller than
the dissipation with the final shear stress -, and hence more energy
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than AW, can be radiated. That is why we refer to AW, as a partial
strain energy change.

In the context of the energy-partitioning diagram (Fig. 3), part of
AW, is expended as the increased dissipation at the rupture front
called fracture energy and denoted E;, and the remainder is radiated
as seismic waves. That allows us to define the radiation ratio,

2nEy
ﬁﬂ'Mo,

where Ey 1s the radiated energy. ng has been called ‘radiation effi-
ciency’ (e.g. Venkataraman & Kanamori 2004), but we would like to
call it ‘radiation ratio’ because the word ‘efficiency’ implies that 5,
cannot exceed 1. Since AW, is only a part of strain energy release,
g can exceed 1 in general.

The radiation ratio provides an important window into the earth-
quake physics (Kanamori & Rivera 2006). Its interpretation relies
on the possibility of representing the average dissipative behaviour
of a fault through the conceptual slip-weakening representation of
Fig. 3(a), and further, on using the seismically estimated, moment-
based values of stress drop for Ao. However, the energy partition-
ing diagram of Fig. 3(a) is ngorously valid only for a one-degree-of
freedom system represented as the combination of a spring, a slider
and a dashpot (Fig. 3b), with the friction under the slider deseribed
by a linear slip-weakening law. Similar one-degree-of-freedom sys-
tems (usually without a dashpot, which here is a proxy for seismic
radiation, but often with other friction laws) are frequently used as
analogs to earthquake faults, with stick-slip obtained in such sys-
tems being compared to earthquake sequences (e.g. Marone 1998).

The fimte-fault process of dynamic rupture is much more in-
volved. Even in the case of ruptures with spatially constant stress
drop and the same slip-stress relation at each point, constructing the
averaged behaviour of stress with slip is non-trivial, since different
points of the fault have different shp (for example, an elliptical slip
shape for a circular shear rupture). More generally, stress depends
on slip through other variables, such as slip rate, state variables and
temperature (e.g. Rice 2006; Dieterich 2007; Tullis 2007; Lapusta
& Liu 2009; Noda & Lapusta 2010b), and hence the dependence
of stress on slip will be, in general, different at different points.
Noda & Lapusta (2012) proposed a rigourous way for averaging the
stress-slip behaviour and constructing energy-partitioning diagrams
for dynamic rupture that attempt to preserve the features of local
stress-slip behaviour. This point 1s discussed more in Section 4.1.

To understand what kind of average of the stress drop distribution
should enter eq. (12) for the radiation ratio, let us consider the
rigourous computation of the partial strain energy change AW,.
The standard approach to compute the strain energy change is as
follows. We start with two elastostatic solutions (Fig. 2): (1) the
initial state, with the slip on S being 0 and traction being 7™ (x;, x3)
and (2) the final state, with the slip and traction being An(x,, x3)
and T"(x,, x3), respectively. Since the medium is assumed to be
linear elastic, all linear interpolations/extrapolations of these two
solutions also satisfy linear elastostatic equations. Introducing a
parameter A € [0, 1], we can define a continuous set (or a virtual
path) of static solutions that connects the initial state (A = 0) and
the final state (A = 1),

e = Ep/AW, = (13)

Su(A, x) = AAn,
Typ(h, x) = AT+ (1 - 1™, (14)

where d,, and T,, represent slip and shear traction on the fault
during this virtual process, respectively. The decrease in the strain
energy, which is path-independent, can be calculated by integrating
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work done by the medium along this path,

Law ! ds
AW =] —dr= o —F A%dA. 15
fo da fnfg” d (13)

Using eq. (14), we get

1 i
AW--[ {—Acr -}-r'”’}<ﬁﬂd3, (16)
. 2
Partial strain energy change A W} is thus

1
Awn:.aW—frﬁ“-auds: -—an-mtdS. an
X 2 ¥

The expression for AW, can be used to define an energy-based
average measure Ao j; of stress drop distribution Ac through

fz Ao - AudS

I
AW, =
! 2[ f5 AudS

1
]f AuydS = -AopAud, (18)
. 2

where A j; is given by

— Jx Ao - Auds

5 [ Ao - wdS
OF T AudS

fse; wds’

Au. (19)

Comparing egs (12) and (18), we see that Aa ; is the average stress
drop measure that enters the computation of AW,. From eq. (19),
‘Ao i represent averaging the (potentially heterogeneous) stress drop
distribution over the rupture with the final slip distribution as the
weighting function. Note that Au is zero outside the ruptured do-
main so that extending X to include regions of zero slip does not
affect the value of Ao p.

For future use, let us define the following averages of the initial
and final shear stress distributions,

— [y T™ AudS
(LT x —_— 20
o E fx AuydS (20)
-Auds
rlm f)“ T (21)
fk} Au; db
These averages can be used to compute the strain energy quantities
by
(?mn Fring) _ (Fmﬁ mh’)_
AW = 3 Au A, AWaz-iz--&mA,
(22)

where Au, is the spatial average of Au;. Note that the difference
between these two stress averages gives Ao z. Hence 77 ; and 7™
are the values to use as the initial and final stress averages in the
energy-partitioning diagrams of the type shown in Fig. 3 (Noda &
Lapusta 2012).

If Ag(x;, x3) 18 indeed uniform within the ruptured domain, then
the three stress drop averages—Ao 4, Ao 4 and Ao ;—are all equal
to each other, as follows from their expressions. In general, however,
Ao is not equal to either Ag y or Ao 4, and thus it is important
to know how similar or different these stress drop measures are, for
example, before using Ao 4y in place of Ao i for estimates of AW,
We have proved that, for cases with heterogeneous stress drop, the
energy-based stress drop average Ao is always larger than the
moment-based stress drop average Aa y (Appendix C).

In the following section, we assume heterogeneous slip distribu-
tions and compare those three measures of average stress drop.
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3 COMPARISON OF THE AVERAGE
STRESS DROP MEASURES FOR
HETEROGENEOUS RUPTURES

3.1 Stochastic 2-D slip model

In our study, heterogeneous slip distributions are generated by ran-
domizing an assumed characteristic shp distribution ¢ = (¢, ¢3)
i a manner motivated by the 2-D stochastic model by Lavallée e al.
(2006). Such approach is motivated by two considerations. First, it
allows us to see the effects of heterogeneity on stress drops more
clearly, by comparing the results to models with the uniform stress
change over the ruptured domain, for which Aoy = Ao ; = Ao .
Secondly, it allows us to study the effect of the characteristic shape
of the slip distribution, such as a triangular shape (c.g. Manighetti
et al. 2005). The characteristic shape of slip distribution may result
from the physics of the dynamic rupture process, making the slip
distribution not fully stochastic. We assign the slip distribution as
follows:

Al."'rl('ﬂl 5 ”3} = C"f,bi(ﬂh .ﬂ_l)R{ﬂ[, 53},
Auy(ny,n3) = 0,
Auz(m 3 H_q) = C"¢3(fl|._ H_l,). (23)

where n) and n; are integer indices for the discrete point in the
x; and x; directions, C, is a normalization factor such that the
ruptures studied here have unit potency and R is a filtered Gaussian
random field with the mean and the standard deviation of 1 and ¥,
respectively. R can be written as

FIR — 1] = C, H(k, — bk "' F[X], (24)

where F| | represents discrete Fourier transformation, X is an uncor-
related random vanable distnibuted over S, k 1s the length of a 2-D
wavenumber vector, v + 1 15 the decay rate in the power spectrum
density of R with increasing k, H is the Heaviside step function, &,
is the truncation wavenumber and C, is a constant which makes the
standard deviation of the distribution equal to y. As v decreases
and y increases, the slip distribution becomes rougher in terms of
its spectral structure and amplitude of fluctuation, respectively. Be-
cause M|; and M3, are the only non-zero components of the seismic
moment tensor in this study, the spatial integration of Aus(n,, n3)
and ¢ results in zero.

Lavallée et al. (2006) examined the fimte fault inversion of
strong ground motion data for 1994 Northridge earthquake (Liu
& Archuleta 2000), and estimated the decay rate of the spectral
power density of slip distribution (v + 1 1f ¢ 1s uniform) as 1.74
and 2.05 for dip-slip and strike-slip components, respectively. They
also examined several earthquakes using a 1-D model, and reported
the decay rate from 1.78 to 2.71. Note that those values are such
that the strain energy would diverge if all the wavenumbers were
accounted for, and the truncation at a high wavenumber is required
to deal with the problem in the framework of continuum mechan-
ics. As discussed by Lavallée ef al. (2006), this scaling behaviour
is based on the assumption that the seismic process 1s lengthscale-
independent for a wide but truncated range from the grain size to
the rupture length (also see Andrews 1980). Note that the spectral
structure of the shp distribution 1s modified from that implied by eq.
(24) due to the multiplication by the characteristic shape ¢. In this
study, we investigate v ranging from 0 to 2 (thus, v + 1 from 1 to
3) to randomize the uniform stress drop model. In our calculations,
the characteristic length of the crack (the diameter of the circular
crack or the shorter side of the rectangular crack) is set as a unit

length and discretized by 256 or 128 (in the cases with aspect ratio
16) gridpoints. The highest wavenumber k,, is set as 1287

We study cases with the characteristic slip function ¢ corre-
sponding to uniform stress drop models for circular and rectangular
cracks of different aspect ratios, and several other slip shapes. Out
of the cases considered, ¢; 1s non-zero only for the cases with uni-
form stress drop in rectangular cracks. I we choose ¢ based on the
uniform stress drop model, siress drop distribution Ao becomes
uniform inside ¥ at ¥ = 0 and hence the three average stress drop
measures are equal to each other for x = 0. As x increases, Ao 1s
expected to be more and more heterogeneous.

Lavallée et al. (2006) reported that the probability distribution
of slip in a single event is better explained by Lévy a-stable dis-
tribution than Gaussian or Cauchy distributions, both of which are
special cases of Lévy a-stable distribution. In this study, however,
we employ Gaussian distribution for the random variable X for sim-
plicity. Liu-Zeng et al. (2005) studied the length of 1-D ruptures
generated using a stochastic model with Gaussian distribution sim-
ilar to the one used in this work. Gaussian distribution has two
parameters (mean and vanance) so that the randomness of X is con-
trolled by a single parameter x, while Lévy e-stable distnbution
has four parameters (the charactenistic exponent, skewness, scale
and location), and they cause additional complexity. Tt would be
important to investigate the effect of other probability distributions
(e.g. Cauchy and Lévy) in future studies.

Manighetti et al. (2005) examined not only results of finite source
inversions of seismological and geodetic observations, but also ge-
ologically measured surface rupture profiles, and concluded that
the slip distribution is typically triangular with various skewness.
The triangular slip distributions can be generated by realizations
of different probability distribution functions, but in this study we
instead randomize a characteristic tapering functions ¢, including
a tnangular-shaped ¢. By doing so, we can examine the effect on
the average stress drop measures of not only the roughness (i.e.
spectral decay power and amplitude of the random field), but also
the characteristic shape of slip distributions. For each selection of
¢, v and x, we have analysed 100 random cases.

1t should be noted that given the non-uniqueness of the geophys-
ical inversion problems and smoothness constraint (e.g. Minson
2010), it is somewhat arpuable how well those slip distributions, es-
pecially their short wavelength features, are constrained. We are not
mtending to support or disqualify the proposed statistical model of
the slip distribution, but take the randomization as a way of produc-
ing examples, a series of distributions with controlled roughness.
To what extent we can constrain the ship distribution is an important
future task mn observational seismology.

Ad is calculated using the spectral boundary integral equation
method (BIEM) after embedding the slip distribution in a domain
four times larger (in length) than the ruptured domain. This is to
prevent the effect of periodic replications on one another. We use the
standard clastostatic formulac in the spectral domain (e.g. Lapusta
& Liu 2009)

FlAa] | " K/ —v)+ & kiksvp/(1 —wp)
Flaos] |~ 2k | kiksup/(1—vp) K+ R/ - vp)

" FlAu,] 25)
FlAus] | )

where vy, 1s the Poisson’s ratio which is assumed to be 1/4. Note that
we shall present the results normalized by Ao y; so that the value of
shear modulus g is not important in this study.
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3.2 Effect of the roughness of the random field

In this section, effects of randomization of the uniform stress drop
models are discussed. Such models have elliptical ¢; for a circular
crack. Figs 4(a) and (b) show examples of the distributions of Au,
and Aa, /Ao ., Tespectively, for different randomization parameters
v and x. The number in each panel indicates the maximum value
of the field plotted. The left-most column (¥ = 0) corresponds
to cases without randomization. Note that the discretely sampled
elliptical function for ¢ produces a numerical error in Ae which
1s significant near the crack tip. This 1s why the maximum value of
Aoy /Ay is not equal to one in the left-most column. In the case
of uniform stress drop, we can test the effect of this numerical error

(v+1=3)

2)

1

(v+1

(v+1=1)

(v=1=0) | (v-1=1

(v=1=-1)

Stress drops 1697

and find that it affects Ao ,/Aa,, by 2 per cent, and Aoz /Ac y
by 4 permille. Such errors are negligibly small compared with the
differences between the stress drop estimates discussed in this study.

With increasing x, the variance in Aw, increases and we some-
times obtain locally negative slip which may not be realistic. This
is why we investigate the value of x only up to 0.5.

The heterogeneity in slip strongly affects the local distribution of
stress drop Aw, as can be expected. The amplitude of variations in
Ao, increases as x increases and v decreases. In the most rough
case shown (the bottom-right panel in Fig. 4), the maximum value
of Aoy /Ac y is more than 100. If such heterogeneity is realistic,
the seismologically estimated average stress drop of 3 MPa would

Ao, / Ag,, for randomized uniform stress drop models

Figure 4. Examples of distributions of (a) Au; and (b) Aay /Ao s for models based on the circular crack model with uniform stress drop (i.e. elliptical ¢,).
Since the spectrum decay rate of the stress drop distribution is smaller by 1 than that of the slip distribution, v — 1 is indicated in (b). The number at the bottom
right of each panel indicates the maximum value of the plotted field. The diameter of the circle and the potency are normalized to 1.
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Models with elliptical ¢, v=10
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Figure 5. Mean and variance of Ao 4 }’EH relative to the case with uni-
form stress drop (x = 0). Models based on elliptical ¢, with v = 0 are
shown here. Examples are shown in the bottom row in Fig. 4. Randomiza-
liom affects Ao 4 by at most 2 per cent (for one standard deviation) in all
cases studied, although the local variation in Aoy is much larger (Fig. 4 b).

correspond to the amplitude of local stress change Ao, of the
order of 300 MPa. The local stress drop can also be negative. The
possibility of negative local stress drop within areas of positive slip
has been recently demonstrated by earthquake sequence simulations
(Noda & Lapusta 2010a). The pattern of positive and negative stress
drops has also been inferred from observations (e.g. Bouchon 1997).

Al the same time, we find that the spatially averaged stress drop
Ao 4 is not much affected by the randomization. Fig. 5 shows the
variation in Ao 4 as a function of x for the cases with v = 0. Even
when the local fluctuation of Ao, /Aoy is larger than two orders
of magmiude, the vanation m Ao 4 is less than 0.02 of Ao . This
observation suggests that Ao is mainly controlled by the overall
shape of slip distribution ¢. This issue is further discussed in the
next section.

The energy-based stress drop Ag ;- increases as the slip distribu-
tion becomes rougher both in terms of the amplitude and the spectral
structure. Fig. 6 shows the contour lines of Ac /Ao . Note that

Models with elliptical ¢,

2 r
| Ao, ,’A(}w_ | ]
15|
= ]

05|

0 E ’ :

0 0.1 0.2 0.3 04 0.5

X

Figure 6. Contours of Ao g /Ao s averaged for 100 random models based
on elliptical ¢»;. The horizontal and vertical axes correspond to those in
Fig. 4.

the horizontal and vertical axes correspond to those in Fig. 4. We
find that randomization always increases Ao ; /Ag y, which can
also be proven theoretically (Appendix C). This means that if one
uses seismologically estimated stress drop Aoy in eq. (18), the
partial strain energy change AW, is always underestimated.

All conclusions obtained in this section for circular ruptures
hold for the rectangular cases as well. The details are given in
Appendix B2.

3.3 Effect of overall shape of slip distribution

The heterogeneous slip distributions are built in eq. (23) by random-
1zing the characteristic slip distribution ¢. The expected form of ¢
varies depending on the physics and dynamics of rupture process.
If the rupture is crack-like and expanding in a self-similar manner,
the characteristic shape could be elliptical or a more concentrated
variant of that due to the inward propagation of the stopping phase.
If the rupture is pulse-like, then the characteristic slip shape may
be increasing with the propagation distance for a growing pulse
or stay constant for a steady pulse. Different arrest mechanisms
would result in different tapering of the shape at the edge of the
rupture. Based on a number of observed slip distributions for nat-
ural earthquakes, Manighetti ef al. (2005) concluded that the slip
distributions are typically triangular with various skewness. Bose &
Heaton (2010) used the 1dea of an average slip shape to construct a
procedure for predicting the final length of ongoing rupture. They
followed the study of Ward (2004) in assuming that the mean slip
function 1s represented by a function which is derived from a re-
stricted random walk process.

Fig. 7 shows the effect of ¢ on Ao y/Acy and Ao 4/Acy
for several simple shapes. We have considered elliptical, smoothed
boxcar, trapezoidal, triangular and sinusoidal radial distributions
for ¢, keeping ¢; = 0. Cases with v = | and x = 0.3 are shown
as well as cases without randomization (i.e. x = 0). Note that the
ruptured domain X is a circle with the unit diameter for all those
cases. For the smoothed boxcar function, we use

|1, <04
"

r, u< + r,o'[]M)jI, 04=r <05, (26)
: 05<r

where # 1s the radial coordinate measured from the centre of the

circular crack.

1f ¢ 1s different from the one for the uniform stress drop model,
then Ao 4 as well as Ao, differs [rom Aa 5/, even without random-
1zation (Fig. 7, crosses and pluses in lower panels). The difference
for the cases studied is within a factor of two, which is relatively
small compared to the uncertainties in the seismological stress drop
cstimates (Allmann & Shearer 2009). Randomization and introduc-
tion of small scale heterogeneity increases Aoy, but causes little
additional changes in Ag ;. When the slip distribution is tapered
more smoothly than that for the uniform stress drop, the stress con-
centration (which is outside ¥ in the uniform stress drop models)
partially occurs inside . This creates a region of negative Ao
inside X and affects the area-averaged stress drop measure Ao 4.
Therefore, how a rupture 1s arrested 1s important for the value of
Ac 4.

In all cases studied, we find Aa; = A the theoretical pruul
of this relation is given in Appendix C. The relation Agy > Ad 4
holds for most cases but not always. For example, in cases for
randomized uniform stress drop models described in the last section,
Aa y is smaller than Aa 4 in about 50 per cent of the random cases,

[l+tanh

=T
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Figure 7. Effect of the characteristic shape ¢ on Ao /Ao g and Ao 4 /Ao . Top row: ¢ as a function of radius from the centre of the rupture. Middle row:
examples of distributions of Aw; and Ao /Aa s with v = | and ¥ = 0.3. Bottom row: values of Ao i/Ac s (black) and Ao /Ao ar (blue). Crosses and

pluses represent the cases without randomization (i.c. x = 0).

so that the average of Ag /Ao y is approximately one. In order to
have Ao,y < Ao 4, we need concentration of large stress drop near
the crack tip where E? is smaller than in the central region(recall
that Ao, is the average of Aa, using E|? as a weight function).
In the extreme case with Au; being a boxear function, Ao /Ao
would become infinitely large because of the singularity at the erack
tip.

4 IMPLICATIONS FOR EARTHQUAKE
SOURCE CHARACTERISTICS

4.1 Energy partitioning and constraints on shear
stress evolution

In this section, we discuss the consequences of our findings on
systematic differences between Aoz and Aoy, for the values of
radiation ratio obtained by Venkataraman & Kanamori (2004) and
then examine the implications of those values for shear stress evo-
lution during earthquakes.

Venkataraman & Kanamori (2004) computed the radiation ratio
nr = Eg/ AW, for large carthquakes (M,, > 6.5) and found that

most of the carthquakes examined by them, except for tsunami
earthquakes and a deep 1994 Bolivia earthquake, had ny ranging
from 0.25 to 1. Their calculations used the seismologically estimated
stress drops (Ao ). Note that 5, can be expressed as

kR

nk = Ex /AW, = mn Mu.

@7

Our finding that the energy-based Ao that enters eq. (27) is
always larger than the moment-based Aa ,, (Section 4.1, appendix
C) suggests that the radiation ratios 5y of large earthquakes may be
even smaller than what was estimated by Venkataraman & Kanamori
(2004), and perhaps much smaller if the stress change distribution
1s quite heterogeneous. More significant heterogeneity in slip distri-
butions would lead to larger Acin comparison to A 4. hence to
more significant underestimation of the partial strain energy change
AW, and thus to more significant overestimation of ry. (Note that
small-scale slip heterogeneity 1s not resolvable by finite fault inver-
sions.)

Note that any differences that exist between Aa; and Aay
because of the theoretically different averaging inherent in these
quantities are in addition to any existing uncertainties in determining
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Aoy from seismic observations (Pavic et al. 2000; Allmann &
Shearer 2009). For example, if the uncertamnty due to determining
Aoy 1s a factor of up to 3 and the potential difference between
Aa i and Aa y is a factor of up to 8, then the combined uncertainty
factor in the energy arguments would be up to 24, which is more
than an order of magnitude.

The conclusion of Venkataraman & Kanamori (2004) that radi-
ation ratio 1 is typically smaller than 1 for typical large natural
earthquakes—which is further strengthened by our results—can be
used to restrict the range of potential scenarios for evolution of shear
stress with slip during seismic events. While ng < 1 is true for the
simplified diagram of Fig. 3 by construction, ng > 1 is theoretically
allowed. This 1s because more energy than A W, can be available for
radiation, if the dissipation on the fault 1s smaller than Er (Section
1), as discussed in more detail in the following.

The radiated energy can be written as (Kostrov & Das 1988)

l N g o fin dl’
— ™ — ") AudS + f d!f — . 8dS
2 ];'( ) 0 5 dt

1 d
zf(r;'" ™) Au, dS |-f d.tf la,ds* (28)
b )

where 117 is the time when all wave-mediated processes are finished,
and 7 and § are shear traction and slip vectors on the fault during
the dynamic rupture process. In many cases, the slip vector is dom-
inated by the component in the overall slip direction (e.g. Noda &
Lapusta 2012) and we shall neglect the contribution from the other
component in the following discussion. In eq. (28), the energy of
new surface creation is absorbed in the frictional dissipation, which
also includes the potential increased dissipation at the rupture tip
analogous to fracture energy of singular crack theory. Multiplying
both sides by the lactor that converts Eg nto ng (eq. 27), we obtain

ﬂﬁrﬁ’fu .L

From eq. (29), whether ny is larger or smaller than one depends on
the sign of the integral, and hence on the sign of the time derivative
of the local shear stress evolution, dr,/d¢, if one makes a reason-
able and general assumption that slip is positive. For example, if
dr,/dt = 0 for all non-negligible slips, then iy < 1. A particu-
lar case of such behaviour is shown in the conceptual diagram of
Fig. 3.

Of course, the sign of dr,/df may vary during dynamic rupture
process, potentially resulting m g > 1. Recent experiments (e.g.
Fukuyama & Mizoguchi 2009; Sone & Shimamoto 2009) suggested
that fault resistance with slip may drop substantially to near-zero
values and then substantially recover (restrengthen) as slip rates
decrease at the end of the local slip. Such behaviour is sometimes
advocated as the basis for pulse-like ruptures (e.g. Heaton 1990).
Fig. 8(a) schematically reproduces one of the experimental curves
(based on fig. 4 a in Sone & Shimamoto 2009). Since the sign of
dt, /dt varies during such behaviour and, in particular, is positive at
the end of slip when the values of slip are largest, the sign of the
integral in eq. (29), and hence the relation of 7y to 1, is no longer
clear for such scenarios.

EE

o lint

=1+

dif ﬁb ds. (29)

Before analysing the energy balance for cases with varable
dr, /di in more detail, using the scenarnios of Fig. 8 as examples, let
us briefly explain what the diagrams of Fig. 8 represent in terms
of dynamic rupture process. Fig. 9 illustrates different stress quan-
tities marked in Fig. 8. The shear stress on the fault is treated as
a scalar quantity in Fig. 9 for simplicity. As the dynamic rupture

propagates on the fault (Fig. 9a), the shear stress at a point varies
(Figs 9b and c). Right before the dynamic rupture, the fault has
prestress (or initial stress) t™™. Slip initiates at a higher value of
stress reached through stress concentration at the rupture front; we
denote this stress value by 7;,. The stress level at the termination
of slip at a point along the fault is denoted by 7. The final stress
v after the passage of all waves, can be readjusted by the waves
to be etther higher or smaller than t.,. The values of these stress
quantities averaged over the fault based on energy considerations
are denoted by adding overlines and, for two of them, subscripts E,
and marked in Figs 8 and 9(d). The average dissipative stress curves
(solid lines in Figs 8 and 9d) are constructed so that (i) the area
under the curve gives energy dissipation per unit fault area and (ii)
the characteristic local features of the stress-slip behaviour are at-
tempted to be preserved in the averaging. The averaging procedure
that achieves these goals is described in Noda & Lapusta (2012).
The ends of the virtual work rate, T7# ; and T, are given by eq.
(20) and (21).

1t should be emphasized that the variation of shear stress at the
fault points that have arrested—due to wave-mediated stress trans-
fers from fault pomnts that are still shipping—contributes to the
mntegral in eq. (29), and hence such variation plays an important
role in determining whether np exceeds 1 or not. On the other hand,
the shear stress change before beginning of significant slip (e.g.
stress concentration in front of rupture tip) does not contribute to
the integral and thus does not affect the sign of np — 1. Henee,
in different scenarios of stress versus slip behaviour, the sign of
nx — 1 can be changed by varying the final stress T ; but not the
initial stress T™ .. However, for a given final stress r"“;., the initial
stress 7™ ¢ is constrained by other physical considerations, such as
the requirements of the positive stress drop Ao 5 and the positive
radiated energy Eg.

In the experimentally-motivated scenario of Fig. 8(a), the radia-
tion ratio iy 1s larger than 1. The partial strain energy AW, is given
by the striped triangle, and it is clearly smaller than the radiated
energy Eg, given by the difference between the grey areas marked
with ‘4 and ‘—’. Tn terms of the integral of eq. (29), what we would
find is that the positive contribution from the increasing dissipative
stress at large slips overwhelms the negative contributions during
fault weakening.

The scenario of Fig. 8(a) has the following characteristic fea-
tures. The average prestress 7™ ; and final stress t™; are close to
each other, in the sense that their difference Ac ; is much smaller
than their magnitude. However, the typical dynamic resistance 1s
substantially lower than either t™ or Wﬁ-, representing signifi-
cant dynamic weakening (and then restrenthening), and hence hav-
ing substantial undershoot. To understand why such ‘substantially
weakening-then-substantially strenthening’ scenario leads to np =
1, let us consider the idealized version of it (Fig. 8b), in which the
dynamic resistance is constant at T3 and the transitions between the
initial stress T™ ;, the peak stress T,, the dynamic resistance T and
the final stress 1" ; are achieved with negligible slip. Then AW, is
represented by the striped triangle in Fig. 8(b) and Ey is given by the
much larger grey area, resulting in nr > 1. In terms of formulae,
we gel

(:E‘iﬁ;}? + mﬂ)ﬂlfz — TaAu,

= Ew /AW, = e
UL r/ 0 e R

- @ — Ta) + (e — Td) $1, (30)
Aﬂ'r
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Figure 8. Schematic diagrams showing energy partitioning in different stress evolution scenarios. (a) Scenario based on laboratory experiments (Sone &
Shimamoto 2009) which leads to g 1. It is characterized by a small difference between the initial and final stresses compared to their difference with the
typical dynamic frictional resistance. This leads to significant weakening at the beginning of slip followed by significant restrengthening at the end of slip. (b)
The idealized version of such scenario, simplified by assuming negligible dissipation above the constant dynamic frictional resistance. (c)(d) Scenarios with
7 smaller than unity obtained from the case of panel a by reducing only /" (panel ¢) or both T™ 5 and £ (panel d). The two cases result in different
moment-based stress drop. (e)—(f) Streamlined versions of scenarios (c)~(d), in which the stress behaviour at the end of slip is simplified. The value of T!in
for yp = | is indicated by a star in panel c.
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Figure 9. Schematic diagrams showing the dynamic rupture process and several stress levels important for the discussion of energy partitioning. (a) A dynamic
rupture process in the space—time domain. (b) Shear stress as a function of time at a point on the fault. In peneral, there are differences between the initial stress
state and the stress at the beginning of significant slip and between the final stress state and the stress at the termination of significant slip. () Shear stress as
a function of slip at a point on the fault. (d) Schematic fault-averaged evolution of the shear stress with slip which differs, in general, from the one at each
particular fault location.

From eq. (32), we clearly see that the sign of the second term
depends on the sign of the difference between the actual dissi-
pation D and the dissipation Ey that would have occurred if the

since (™ — Tg) > Ao and (Wﬁ —T) > Aoy by construction
of the scenario. Hence, the scenario in Fig. 8(b) (as well as 8a)
contradicts the observations on racdhation ratio.

Note that the behaviour illustrated in Figs 8(a) and (b) can occur
on parts of the fault (i.e. for local shear stress as a function of local
slip) without contradicting the observations on the radiation ratio,
as long as such behaviour is compensated for by the behaviours at
other fault locations, so that the average dissipation behaviour is
different.

One can adjust the experimentally motivated scenario in Fig. 8(a)
to tesult in i which is smaller than 1 without changing the overall
shape, by adjusting the initial and final stresses T™; and vz,
Changing only T ; (while keeping the same /") changes 7z butnot
the sign of ng — 1. This can be easily seen from the energy balance.
Writing AW = Eg + D, where D 1s the total dissipation (including
the increased dissipation at the rupture tip) and subtracting from
both sides the dissipation £ = T ; Au A that would have occurred
if slip were accumulated with the resistance equal to the final stress
7, we obtain

AW, = Eg + (D — E¢) = Ex + (D — T Au, 4), @31

e =1 —(D— T, Au, A)/AW,. (32)

stress during the entire rupture would be equal to the final stress.
This difference does not depend on T, but clearly does de-
pend on " ;.. The difference is trivially positive (and hence ng <
1) for scenarios in which the dissipative stress is always above
the final stress T, (e.g. scenarios with overshoot). Eq. (32) can
also be obtained from eq. (29) by integrating the second term by
parts.

Hence, to achieve g < 1 for the scenarios of Figs 8(a) and
(b), we need to decrease the final stress T, (Fig. 8c). In the ide-
alized scenario of Fig. 8(b), the final stress ™, has to become
smaller than the dynamic resistance Ty, leading to avershoot, since
i — 75 leads to nr = 1 in eq. (30). However, in the more general
scenario of Fig. 8(a), the additional dissipation makes 1t possible
to achieve nr < 1 without overshoot or with a mild undershoot.
Fig. 8(c) shows a scenario where the radiated energy FEg is near-
zero, and any further decrease in 71 would not be physical (as it
would result in negative E.). The position of 70, that would be
the highest for the condition 5, < 1 to hold is indicated by a star in
Fig. 8(c).

The decrease in 17 ; would increase the difference between 79
and t1" ;. and hence lead to larger values of energy-based stress
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drop Ao . If the stress drop is relatively homogeneous, so that
Aoy is comparable to Aoy, then the stress drops may become too
large compared to the observed values of the order of 1-10 MPa for
large events (e.g. Kanamori & Anderson 1975). For example, if the
shear stress on the fault is determined by ambient normal stress and
hydrostatic pore fluid pressure, times the friction coefficient which
decreases from typical peak values of 0.7 to low dynamic values
of 0.1 due to high-velocity weakening, then the strength drop (the
difference between the maximum and minimum of the dissipation
rate) is of the order of 100 MPa. To avoid issues with stress drop,
there are two possibilities. Either the slip distribution has to be
relatively heterogeneous, so that Ao is much larger than Aa . Or
‘Ao is in fact of the order of 1-10 MPa, pomting to low overall
strength and hence strength drop, for example, due to ambient fluid
overpressure.

Scenarios similar to Figs 8(a) and (b) can achieve both ny <
1 and smaller Ao than in Fig. 8(c) by lowering both T ; and
7, (Fig. 8d). In this scenario, the prestress T™ ; moves further
away from the peak stress T, resulting in fault operation under
lower overall shear stress than 7, that may be comparable to the
static strength. Such scenarios have been shown to favour pulse-like
ruptures (e.g. Perrin ef al. 1995; Zheng & Rice 1998; Noda ef al.
2009).

Note that while the sign of g — 1 does not depend on the 1nitial
stress T, the energy partitioning overall does. The upper bound
for T 1, is given by a situation in which the fault is uniformly loaded
to just below Ty (at which slip would start). As T decreases
from that upper bound, assuming the same L AW, (and thus
‘Aa ;) decreases while the dissipation remainsunchanged. The lower
bound for T™ is given by either the condition n; > 0 (positive
radiation) or Ag ; > 0 (positive stress drop).

In constructing the scenarios of Figs 8(c) and (d), we keep the
same experimentally motivated stress-slip curve and simply move
the initial and final stress levels, for illustration purposes. This
procedure results in quite complicated behaviours at the end of
the ruptures. Figs 8(e) and (1) show streamlined versions of these
scenarios, in which the average stress at the termination of sub-
stantial slip, T, and the final state of stress on the fault, T,
are equal to each other. These simpler scenarios result in similar
conclusions as those of Figs 8(c) and (d), since they have the same
energy-based stress drops, and the modified parts of the encrgy
balance are rather small. These streamlined versions make it clear
that the case of Fig. 8(e) (as well as 8c) represents overshoot and
the case of Fig. 8(f) (and 8d) represents a moderate undershoot,
both of which are consistent with the observations on the radiation
ratio.

An example of the averaged behaviour of shear stress with slip
obtained m a dynamic rupture simulation is shown m Fig. 10. The
dynamic rupture 1s simulated as a part of an earthquake sequence
on a fault governed by a rate- and state-dependent friction, with
additional dynamic weakening in the form of pore pressurization
(Noda & Lapusta 2010b). This is the 7th cvent from fig. 8(b) of
Noda & Lapusta (2010b). Note that the averaging of stress versus
slip behaviour is done using the rigourous procedure described in
Noda & Lapusta (2012), with the resulting average stress-slip curve
reflecting the local stress versus slip behaviour on the fault while
being scaled to preserve the dissipated energy and allowing for
usual computations of strain energy change. The radiation ratio
ng for this event 1s 0.52. Note that one does not need to compute
areas m this case to venify ng < 1, as the entire dissipative stress
curve 1s above the final stress, and np < 1 directly follows from
Eg. (32).
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7th event in Noda and Lapusta [2010] Figure 8b
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Figure 10. Anecxample of the diagram showing energy partilioning obtained
in a dynamic rupture simulation. The event is the Tth event in a sequence of
earthquakes reported in fig. 8(b) of Noda & Lapusta (2010b). The radiation
ratio of this event is 0.52.

4.2 Estimating moment-based and energy-based average
stress drops from observations

To find the average stress drop from results of finite fault inversions,
the effective rupture area A is estimated and then eq. (A8) oreq. (6) is
used (e.g. Somerville ef al. 1999; Venkataraman & Kanamori 2004).
Hence, the estimated stress drop Ao ,; depends on the estimate of
A. In particular, if the regions of small slip are excluded from the
estimate of A, the obtained value for the stress drop increases from
Ao . Since the energy-based stress drop Aoy is always larger
than Ag y, the question arises as to whether the rupture area can be
defined so that the resulting moment-based stress drop approximates
the larger energy-based one.

There is an uncertainty in the determination of the ruptured do-
main ¥ and its area 4. In practice, the ruptured domain obtained
from an inversion often contains regions of near-zero slip. Such re-
gions may not represent the actual source but rather be the result of
the smoothness constraints often used in inversions (e.g. Harris &
Sepall 1987). As pointed out by Venkataraman & Kanamori (2004),
different procedures can be used for determining the rupture area.
Somerville et al. (1999) suggested a trimming criterion to shrink the
ruptured domain from the support of a finite source inversion. Mai
& Beroza (2000) used the autocorrelation length. In the absence of
the finite source inversion, the length scale of the rupture area 4'/2
1s estimated from the corner [requency, with assumptions on the
rupture speed and the shape of the ruptured domain (e.g. Ak 1967;
Brune 1970; Madariaga 1976).

Let us investigate how the moment-based and area-averaged
stress drops vary for different definitions of the ruptured domain
3, based on a slip threshold, as in eq. (6). Fig. 11 shows such stress
drops, which we denote by Ac 4, and Aa y, as functions of the
threshold A for a randomized model with v = 1 and x = 0.3 based
on the circular crack with uniform stress drop. Ag ; is estimated
using eq. (6) even if Z;; is not a connected region. If instead one
modifies eq. (6) by starting with eq. (A8) and using £, calculated
for the exact shape of ¥, then the value of stress drop would be
different. Although it 1s possible to solve such a mixed boundary
problem 1n static elasticity, this may not be practical for observa-
tions since this would require recomputing the formula for each
inversion. As th increases, Xy shrinks and Ay, decreases, so that
A6 4y and Aoy, increase. At the same time, Ao ;. is independent
of the definition of the ruptured domain.
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Figure 11. The dependence of Ao vy and Ao 4 on the threshold ¢ in
defining X for randomized cases with v = | and x = 0.3 based on the
circular crack model with uniform stress drop. At a certain value of th,
A yin becomes equal 1o Ao g,

rh‘_ for randomized circular uniform stress drop models
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Figure 12. A contour plot of th, as a function of v and y for randomized
cases based on the circular crack models with uniform stress drops. The
value of th, is calculated every 0.1 in v and 0.05 in x. The axes are the same
as in Fig. 6.

We observe that, at a certain value of th, Ao, becomes equal to
Ao 1. Let us denote this value of th by th,. If the ruptured domain is
truncated using th = th., then Ad y;;, would approximate Ac -, and
then AW, and hence the radiation ratio eq. (27) would be estimated
correctly. For the case shown in Fig. 11 (v = 1 and x = 0.3), th,
has the mean value of 0.35, with the variance of 0.03, based on 100
random cases.

Fig. 12 shows the dependence of th, on the parameters of slip
heterogeneity v and yx . For each parameter combination, the value of
th, 1s determined based on averaging 100 random cases. We find that
0.2 < th, < 0.4 for a broad range of the heterogeneity parameters,
both in circular and rectangular cases. Hence, using th;: from that
range for estimating the rupture area would be a reasonable choice
for estimating stress drop values closer to the moment-based ones.

Note that the value of th. depends on other characteristics of the
ship distribution such as ¢, the shape of Au, before randomization.
Fig. 13 shows the dependence of average stress drop measures on the
threshold th for different ¢. If ¢ reflects a characteristic feature of
dynamic ruptures such as pulse-like propagation, the understanding

(a) Models with smoothed boxcar distribution for ¢

,"J‘J ';I / il

v=1,%1=03
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lv=1,x=03 '

Aoy

U i " "
(c) 4 Models with triatlgular &,
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e e |

(d) Models with sinusoidal ¢,
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04 0.5

Figure 13. The dependence of Ac yy4 and Ao 4 on the threshold ¢k in
defining Xy, for randomized cases based on different original slip distribu-
lioms: (a) smoothed boxear, (b) trapezoidal, (¢) trangular and (d) sinusoeidal
withv =1 and x = 0.3.
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of rupture dynamics would contribute to the estimation of th, and
hence to the estimation of the energy-based stress drop.

5 CONCLUSIONS

We have investigated three different approaches to averaging hetero-
geneous stress drop distnibutions following slip on a part of a planar
interface and compared the resulting average stress drop measures:
the moment-based Ao, the area-based Ao , and the energy-based
‘Ao ;. Theoretically, the three measures are given by averages of
a stress drop distribution over the planar interface with following
different weighting functions: slip distribution of the correspond-
ing uniform stress drop case for Ay, the boxcar function (which
restricts the averaging to the ruptured domain only) for Ae ; and
the final slip distribution (which is potentially heterogeneous itself)
for Ag ;. Practically, Ao, has been estimated from seismological
observations in numerous studies, Ag 4 gives the difference in the
average stress levels before and after rupture, and Ao enters the
calculations of partial strain energy change and radiation ratio (and
hence considerations of energy partitioning).

To the best of our knowledge, this 1s the first study that explicitly
introduces the energy-based average measure of stress drop, A,
although its notion has been indirectly implied by the developments
in Kostrov & Das (1988); Noda & Lapusta (2012). Unlike Aa 3 and
‘Aa 4, Aa , does not depend on the definition of the ruptured domain
%. Note that defining the ruptured domain in practice implies a
criterion of what constitutes ‘significant’ slip, which is typically
defined as a percentage of the maximum slip.

If the stress drop distribution is spatially uniform within the
ruptured domain, the three average measures of stress drop are
equal to each other. To compare the measures for non-uniform stress
drop distributions, we consider both scenarios that are based on the
uniform stress drop with a randomized addition, and scenarios that
have different characteristic slip shape (non-elliptical). All scenarios
have the same potency/moment, and hence the same Ao y. We
find that the three measures of the average stress drop are similar
to each other for small levels of heterogeneity. Furthermore, the
difference between the moment-based Ao, and area-based Ao ,
remains within a factor of two for all cases we have investigated.

However, we find substantial differences between Ao 4 and Ao g,
by a factor of up to 8 for the cases considered. This means that using
the seismologically inferred stress drops for energy considerations
can lead to substantial errors, since the uncertainty in the seis-
mological estimates of stress drops 1s now combined with another
significant factor (up to 8 1n this study), resulting in the combined
uncertainty factor for the partial strain energy change of one order
of magnitude or more.

Fortunately, we find that Aa ; = Ag , always, the finding that we
have proved theoretically. This means that using Aa , in the estima-
tion of the partial strain energy change AW, and radiation ratio ny
results in systematic underestimation of A W, and hence systematic
overestimation of 7. This result suggests that the radiation ratios
obtained by previous studies (Venkataraman & Kanamon (2004))
for a number of earthquakes may be overestimated. For some earth-
quakes, Venkataraman & Kanamon (2004) used a timmed rupture
area for esimating the stress drop. In those cases, the stress drop
estimate is closer to Ao ;. However, their conclusion that most large
earthquakes have the radiation ratio significantly smaller than one 1s
further strengthened by our study, since the properly estimated val-
ues would be even smaller. Note that since the difference between

Ao and Ao y increases for more heterogeneous slip distributions,

Stress drops 1705

the radiation ratios would decrease for cases with small-scale slip
heterogeneity (assuming the same potency). We would like to em-
phasize that values ny > 1 are theoretically allowed, but should be
quite rare based on the observations.

The observation that the radiation ratio is typically smaller than
one can be used to constrain the range of potential scenarios of
dissipative stress evolution with slip, averaged over the entire fault.
All scenarios in which the average dissipative shear stress rate 1s
negative with slip satisfy ng < 1, as do scenarios in which the
average dissipative stress stays at or above the final average stress
(resulting in overshoot or no undershoot). Some scenarios with sub-
stantial restrengthening (undershoot) may violate this observation.
In particular, the scenario with high initial and final stress levels
in comparison with the dynamic frictional resistance has 5z much
larger than unity. However, undershoot scenarios in which the final
stress is sufficiently low still satisfy ny < 1.

The seismological moment-based estimate of stress drop depends
on the definition of the ruptured domain X, which is uncertain in
finite fault inversions due to areas of near-zero slip. Such areas may
be present in inversions due to smoothing. If we define the ruptured
domain by a threshold ¢h with respect to the maximum slip, then
the moment-based stress drop Ad y increases with the value of
th. Selecting th ~ 0.3 results in a reasonable approximation to the
energy-based stress drop Ao ;; for a wide range of randomized cases
based on uniform stress drop models that we have studied.

One interesting finding is that even the characteristic overall shape
of the slip distribution (without any smaller scale randomization)
already notably affects the differences between the three average
stress drop measures, especially between moment-based Ao ; and
energy-based Ao ;. Features of dynamic rupture nucleation, prop-
agation, and arrest (unilateral versus bilateral, crack-like versus
pulse-like, abrupiness of rupture arrest, etc) can be interpreted as
factors determining the charactenistic shp distribution (elliptic ver-
sus triangular versus trapezoidal, etc). Hence differences in earth-
quake physics can contribute to systematic differences between the
three average stress drop measures.

OQur results suggest that improving our understanding of slip
distribution during carthquakes, including its heterogeneity, is quite
important for better constraints on energy partitioning.
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APPENDIX A: EXPRESSION OF
MOMENT-BASED STRESS DROP
BY MADARIAGA 1979

Madariaga (1979) discussed the relation between models of uniform
and heterogeneous stress drop distributions and pomted out that the
seismologically estimated stress drop is not, in general, equal to the
area-averaged stress drop. The seismic moment tensor M;; is written
as

M} = ,'.Lf(AH;Hj e Au_;n,-)dS, (Al)
E
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where Au; and n; are the ith components of Au and the unit normal
vector i to the fault, respectively. By using the elastic reciprocity
theorem, Madariaga (1979) showed that Mj; can be written in terms
of stress drop distribution Ao (x;, x3) as

M;; - f Aoy (Ef ! E,("') ds, (A2)
b

where E|/ is the kth component of the slip vector due to stress drop

AT on ¥ such that its Ith component is given by

A',r}rj - ;‘Lﬂjsﬁ‘ (A3)

In our study, the fault has a uniform unit normal vector n = e,
(i.e. n, = ny = 0 and n, = 1), and the overall slip direction is e,.
In this case, the only non-zero components of the seismic moment
tensor are

M= g l= it f Ay ds, (A%)
x
From eqs (A2) and (A3),
M, = f AapE} dS, (A3)
E

where E}* (k = 1, 3) is the kth component of the slip distribution
due to uniform stress drop by the shear modulus g on X in the
direction of e,.

Slip functions E'? depend on the domain . For a circular crack
model with the radius r, one has (Eshelby 1957)

24 .
EPl=""r (1—r?r)"?, ER =EP =, (A6)

T
where ¥ 1s the radial coordinate measured from the centre of the
crack. Note that the Poisson’s ratio 1s assumed to be 1/4. There 1s
no known analytical expression of E'? for rectangular crack mod-
els. Parsons et al. (1988) numerically calculated the slip functions
for specific aspect ratios. In this study, we examine circular rup-
tured domains and rectangular ruptured domains with aspect ratios
o = 1, 4 and 16. In the rectangular cases, we calculate £'> numer-
ically by conducting quasi-dynamic rupture propagation calcula-
tions for a traction-free rupture domain with uniform initial stresses
(Appendix B1).

Note that from eq. (A5), if the stress drop is uniform and equal
to Ao e, then

M,

Aoy = ——.
Y [ ERas

(A7)
In practice, even when the stress change on the fault is not uniform,
seismologists often estimate a stress drop using eq. (A7). We call
Ao ,; moment-based or seismologically estimated stress drop. It
follows from eqs (AS5) and (A7) that Aoy 1s given by

S [y Ao - wdS "
Koy =200 — ey BT (A8)
fsﬁ wdS

where w is the weighting function. The formulac eq. (4) arc obtained
by evaluating the spatial integrations in eq. (A7).

APPENDIX B: RECTANGULAR
RUPTURES
B1 Slip distributions for uniform stress drop models

The slip distribution due to a uniform stress drop over a certain
region is a solution to a mixed boundary-value problem. The analytic
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solution for such a problem is not always known. The analytic
solution for a 2-D planar crack was derived by Starr (1928), and
the solutions for the circular and elliptical cracks were derived
by Eshelby (1957). Parsons et al. (1988) calculated solutions for
rectangular cracks with different aspect ratios and burial depth using
a finite element method and then derived formulae similar to eq. (6).
Those results have been widely used in estimation of stress drops
in seismology.

In this work, slip distributions ¢, and ¢, for rectangular ruptures
with uniform stress drop have been computed by conducting quasi-
dynamic simulations using the spectral boundary integral method
(Rice 1993). Adaptive time stepper is used which minimizes the L,
norm of the slip rate (or, equivalently, traction in the quasi-static
problem) inside the ruptured domain . Let us select the reference
state of linear elasticity such that no slip corresponds to zero shear
stress on the fault §, and assume uniform stress drop g inside Z. At
the nth step, we have a slip distribution (), @(,)) inside X. The
static stress field (fj(n), f3(x)) due to that slip distribution is calculated
using eq. (25) as

Flfiml | _  p [ KA =wp)+K
F fom] 2k | kiksvy/(1 = wp)

Fléin]
; Bl
g [ th,l] e

where F[ ] 1s the Fourier coefficient that corresponds to a wavenum-
ber vector (ki, £3), k is the absolute value of that vector, and v, is
Poisson’s ratio which is assumed to be 1/4. Note that similarly to
the main part of this paper, we assume spatial periodicity with the
period which is four times larger than the rupture length. From the
quasi-dynamic approximation (Rice 1993), the corresponding slip
rate (Vi(n), Pom)) is

V][ar}_ _ _l ( f?m L — Ay ’ B2)
VE[n}_ n fam 0
where n = £/(2¢,). The stress drop distribution is:
i nside X
Aa, = ] (B3)
0 outside ¥

k;kr»vp/(] - Vp)
Kt + k3700 — wp)

The rate of change of the static stress field is

Flfiml | p [RA=w)+k kikvp/(1 = v)
F1 fam] kikap/(1 = vy) &+ /(1= vp)

2k
FI¥iw]
F[Vam)]

(B4)

In an explicit time integration with a time step At,, the distributions
of slip and static stress are updated as

[qbl(nHJ:I _ [@I{n)] —|—Afn [ V]fn}] i (BS)
¢2:’n +1) d’Z{n] VZ{M}
fl{n 1) fltn} flltnj

=+ + AL - (B6)
[ )G{n{l}] |i)(2cn}i| [ fzcna:|

In order to minimize the norm of the mismatch in the static stress
field at the (n + 1)th step:

Ly= ) A(fiwen + 1Y + Farny)» (B7)

(x3)ek
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Figure B1. Slip distribution due to a uniform stress drop by p in the direction of x; for rectangular domains with difTerent aspect ratios: (a) o = 1, (b) e = 4,
() @ = 16. The left-hand side and right-hand side columns show distribution of ¢ and ¢s, respectively. The domains have unit widths (dimension of the fault
in the x3 direction). Because of symmetries of ¢ and ¢4, only a guarter of the domain is shown fore¢ = 1 and ¢ = 4. For e = 16, only the region near the end
of the rupture is shown for convenience. Note that one of the corners of the fault is located at (x;, x3) = (0, 0) in all cases. The centre of the fault is located at

(0.5, 0.5) in (a), (2, 0.5) in (b) and (8, 0.5) in (c).

the time step At, is selected such that
. E[.n.x;u:r {(flcn} + ﬂ)flltna + fz{n)f;{nj}

< 2 ™
ztx:-n:ex{fl{ﬂh + le[n: }

The series of slip distributions (¢, 2p) (1 = 1, 2,3, ... ) is not
meant to be an approximation of any physical process but rather
this is a way to converge to the static solution We iterate this step
until the maximum value of |fi,) + ¢ and |fy| becomes smaller
than 10 .

Fig. B1 shows the resulting slip distributions in the uniform stress
drop models for rectangular ruptures with the aspect ratios o = 1,
4, and 16. ¢ is not uniformly zero, although its amplitude 1s much
smaller than that of ¢,. Note that E'? is equal to (¢, ¢3). Spatial
integration of E1? yields C = 2.53, 3.02 and 5.21 in eq. (A8) for
« = 1, 4 and 16, respectively. Our calculation agrees with Parsons
et al. (1988) who reported C = 2.55 for a square rupture (i.e. o =
1) based on a finite-element calculation. Because we assume spatial
periodicity (with the size of the repeated domain four times larger
than the ruptured domain) and Parsons ef al. (1988) assumed large

At, = (BS)

enough burial depth, our estimation of C 1s expected to be smaller
because of the stress concentration due to periodic replications. The
mismaich is negligibly small, and the comparison between different
averaged stress drops is not affected by the existence of periodicity.

B2 Effect of randomization for rectangular ruptures

The rectangular uniform stress drop models described in the previ-
ous appendix are randomized using the same approach as for the
circular ruptures, based on eq. (23). Figs B2, B3 and B4 show dis-
tributions of Au, and Ao for the rectangular domains with aspect
ratios & = 1, 4 and 16, respectively.

Fig. BS shows Ac /Aoy for rectangular cases. Similarly to the
circular cases, introduction of heterogeneity increases Ao {’EM
from 1. As « increases, Ad ; /Ao s becomes less dependent on x
at large v. This can be explained by the following consideration. If
a Fourier mode with much a longer wavelength than the width of
the rupture is dominant along the rupture length (c.g. the cases with

£10T "1 AIn[ wo ASojouyda ], JO 2/ryrsu] LIIofIfe,) & /510 spewmo fpiogxo 1[5, dyy woly papeomo]



v = 2 and ¢ = 16 shown in Fig. B4), then the distributions of slip
and stress drop can be approximated by

Ao
Au, ~ %ﬁ[l + e sin(kyx, +c), (B9)
Aoy =~ EM“ + e sm(k x; + )], (B10)

where ¢ is the amplitude of the sinusoidal perturbation and ¢ is a
constant. In this approximation, Ao ;; becomes
(a) =0

x=0.1 ¥=02
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s _f_,g.A(r]Am,dSwH (B11

LT Auds O )
Therefore, if v is large enough so that only the long wavelength com-
ponents parallel to domain lengths are significant, Ao » is expected
to be near Ao .

The threshold values for truncating the ruptured domain so that
the moment-based stress drop becomes a good approximation of
the energy-based one are shown in Fig. B6. The results suggest that
the ~ 0.2 — 0.4 unless the slip distribution 1s very heterogeneous,
similarly to the circular models, although it should be noted that th,
depends on the characteristic slip distributions ¢, and ¢-.

r=04

v=2
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(v+1
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=
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._._-11.1

Ao, / Aoy, for randomized uniform stress drop models

Figure B2. Examples of distributions of (a) Au; and (b) Aa for randomized models based on square ruptured domains with uniform stress drop. The number
at the bottom right of each panel indicates the maximum value of the quantity plotted. The sides of the square and the potency are normalized to one.
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153

a=4, y=03, v=1,(v+1=2)

& = B

a=4, y=03, v=1,(v—-1=0)

& a=4, y=03, v=0,(v+1=1) max. ©) a=4, 7=03, v=0, (v—1=-1) Imax

a=4, y=0 (uniform stress drop)

0.364

-max -max
Au, for randomized uniform stress drop models Ao, | Aay, for randomized uniform stress drop models

Figure B3. Examples of distributions of (a) Awuy and (b) Ao for randomized models based on rectangular ruptured domains (aspect ratio ¢ = 4) with uniform
stress drop. The number at the bottom right of each panel indicates the maximum value of the guantity plotted. The shorter sides of the rectangular and the
potency are normalized to one.

(a)
v(vl) a=16, y=03
: S e i b ax
0(1) e 0.186
1(2) 0.170
2(3) 0.139

Uniform
Ay 0.0829|

Au, for randomized uniform stress drop models

(®) D
v(-1) a=16, =03

0(-1) i i e 178 £
1(0) e e 768

2(1) 4.79

Ao vz

Aa, / Agy, for randomized uniform stress drop models

Figure B4. Examples of distributions of (a) Awy and (b) Ao for randomized models based on rectangular ruptured domains (aspect ratio o = 16) with
uniform stress drop. The number at the bottom right of each panel indicates the maximum value of the quantity plotted. The shorter sides of the rectangular
and the potency are normalized to one.
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Figure BS. Aa/Aa s as a function of parameters characterizing rough-
ness of the randomized models based on rectangular ruptures with uniform
stress drop: (a) e = 1, (b)) e =4, (c) o = 16.

APPENDIX C: PROOF OF Acg> Aoy

First, let us point out that partial strain energy change is a non-
negative quantity. From eq. (17), the partial strain energy change
AW, is a function of slip distribution Au,

AWozlan-e.udS, (C1)
2)s
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Figure B6. The threshold th, which yield Ao p = Aoy for randomized
models based on rectangular ruptures with uniform stress drop: (a) @ = 1,
ble=4,(c)x=16.

where Ao 1s a linear function of Au given by eq. (25). AW, is the
volume integral of the strain energy density distibution due to Au
added to the stress-free configuration,

AWy = f, W(Ae)V, (C2)
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where Ae is the strain distribution due to A on the fault and W is
the strain energy function. Because W is positive definite, AW, is
non-negative for any Au,

AWy(Au) =0 forall Au (C3)

Any slip distribution can be expressed as a sum of a uniform
stress drop model and the deviation from it which has zero potency.
Let us consider a uniform stress drop model, with Aw, and Aag,,
and a perturbation to it, Auy and Ag}, such that the support of Auy
is ¥ and and the potency of the perturbation is zero,

f Auy dS = 0. (C4)
E

All the other conventions are the same as in the problem setup of
Section 2. The partial strain energy changes due to Aw, and Au,
separately are given by

1
AWy, 3 f Aagy  AuydS =0, (C5)
b3
and
1
AWy, = i f Agy - Auy ds = 0. (Cé)
X

The partial strain energy change due to the sum of the uniform
stress drop model and the perturbation is

1
AWoyp = 5 f(&a,, + Acdp) - (Auy + Auy)dS
b

1
= AW(M ! ﬂWﬂp + Ef AO’H = Aﬂpdxq
x

]
+= f Ao, - Au,dS. (7
=

Because Aoy, 1s uniform and the perturbation has zero potency (eq.
C4), the third term in eq. (C7) is zero,

1 |
—f Aoy - Auy dS = ~Aau-f Aup dS = 0. (C8)
2 /s 2 5

Using the elastic reciprocity theorem, the fourth term is identical to
the third term which 1s zero,

I 1

Ff Aop - Auy dS vf Ady - AuydS = 0. (C9)
2y 2 /s

Therefore, eq. (C7) leads to

A |"’V[Jup — &W{ru + A ,“th\- {(—‘IU)

Because of the non-negativeness of AWy, (eq. C3), we can con-
clude,

AWy > AWy, 1y

This means that if the support of the slip distribution and the potency
(or the seismic moment) is preserved, then the uniform stress drop
model minimizes the partial strain energy change AW,.

Now let us use this result to compare A ; and Ag s for the case
with slip distribution Au,y, = Awuy + Auyp. From eq. (18), one has

| [ — | —
Awflllp = EAG Ir;-.ﬁu,,pl A= EAO’H&H“]A. {Cl2)

The second equality in eq. (C12) holds because the cases with
Auyy and Awy have the same potency/moment (by construction);
this also means that they have the same moment-based stress drop
Ao . Furthermore, for the uniform stress drop case with Auy, all
three average measures of stress drop considered in this study are
equal, and hence the moment-based stress drop can be used to find
A Wﬂus

D —
AWo, = 586y ity 4. (C13)

Egs (C11), (C12) and (C13) immediately yield
Aok = Aoy (C14)
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