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[1] We apply adjoint models of mantle convection to North America since the Late Cretaceous. The
present-day mantle structure is constrained by seismic tomography and the time-dependent evolution by
plate motions and stratigraphic data (paleoshorelines, borehole tectonic subsidence, and sediment
isopachs). We infer values of average upper and lower mantle viscosities, provide a synthesis of North
American vertical motions (relative sea level) from the Late Cretaceous to the present, and reconstruct the
geometry of the Farallon slab back to the Late Cretaceous. In order to fit Late Cretaceous marine
inundation and borehole subsidence, the ac;joint model requires a viscosity ratio across 660 km
discontinuity of 15:1 (reference viscosity of 107" Pa s), which is consistent with values previously inferred
by postglacial rebound studies. The dynamic topography associated with subduction of the Farallon slab is
localized in western North America over Late Cretaceous, representing the primary factor controlling the
widespread flooding. The east coast of the United States is not stable; rather, it has been experiencing
continuous dynamic subsidence over the Cenozoic, coincident with an overall eustatic fall, explaining a
discrepancy between sea level derived from the New Jersey coastal plain and global curves. The east coast
subsidence further constrains the mantle viscosity structure and requires an uppermost mantle viscosity of
10%° Pa s. Imposed constraints require that the Farallon slab was flat lying during Late Cretaceous, with an
extensive zone of shallow dipping Farallon subduction extending beyond the flat-lying slab farther east
and north by up to 1000 km than previously suggested.
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1. Introduction

[2] The Cretaceous marine inundation of western
North America (NAM) has been a stratigraphic
enigma because of the combination of large thick-
nesses of sediments deposited over a large hori-
zontal length scale (nearly 10° km) [Bond, 1976;
Cross and Pilger, 1978; Liu and Nummedal, 2004,
Liu et al., 2005]. Using hypsometric analysis and
assuming isostasy, Bond [1976] suggests that the
observed flooding of NAM (45% by arca), would
have required a 310 m sea level rise, resulting in
the accumulation of approximately 700 m of sedi-
ments. Since nearly half of the area of NAM
Cretaceous marine sediments is significantly
thicker than 700 m, Bond [1976] argued that
custasy could not have been the only process that
had operated. Cross and Pilger [1978] attributed
the excessive sediment thickness and subsidence to
subcrustal loading induced by a shallow dipping
slab. Liu et al. [2005] determine that regional
subsidence of the Western Interior consists of a
short-wavelength flexural loading component that
changed on a time scale of a few million years, and
a long-wavelength dynamic component that
changed over a time scale of tens of million years.
Liu and Nummedal [2004] determine that the
wavelength of the dynamic subsidence component
is on the order of 1500 km.

[3] Cretaceous marine sediments at present lie at an
clevation of approximately 1 km, but since putative
long-term global sea levels vary from 70 m [Miller
et al., 2005] to 250 m [Haq and Al-Qahtani, 2005],
NAM must have subsided and then uplifted over a
large length scale [Bond, 1976]. Several numerical
models have attempted to explain these inferred
vertical motions in terms of the dynamic topogra-
phy induced by negatively buoyant subducted
slabs [Mitrovica et al., 1989; Burgess et al., 1997,
Lithgow-Bertelloni and Gurnis, 1997). Mitrovica et
al. [1989] attributed the Western Interior Seaway
(WIS) to shallow subduction of the Farallon plate
that could create a ~1,400 km wide region of
dynamic subsidence. Specifically, using 2-D iso-
viscous forward models, subsidence and subse-
quent uplift was attributed to changes in the dip
angle of the Farallon plate. Burgess et al. [1997]
expanded on this concept with three-dimensional,
variable viscosity models that attempted to match
stratigraphic sequence boundaries. These models
shared the common attributes of fixing the dynam-
ics to the frame of reference of the overriding
(NAM) plate, and fits to the stratigraphic con-
straints were obtained by changing the subduction

depth and dip to obtain the best fits to either
continental tilt [Mitrovica et al., 1989] or sediment
thickness and sequence boundaries [Burgess et al.,
1997]. Lithgow-Bertelloni and Gurnis [1997] used
a parameterized global mantle flow model with the
slabs falling vertically at a constant rate, in which
NAM subsided and then uplifted as it moved to the
west over the Farallon slab. However, the subsi-
dence and uplift were phase shifted by about 20 Ma
in the models toward the present compared to the
inferred timings [Lithgow-Bertelloni and Gurnis,
1997]. Le Stunff and Ricard [1997] proposed that
partial advection of mantle equidensity surfaces by
vertical motion induced by driving loads enables
better prediction of the amplitude and phase of
flooding.

[4] The Farallon slab may have also influenced the
stratigraphic record further to the east and later in
time. By deconvolving the influence of paleoba-
thymetry from sediment accumulation within five
wells from the New Jersey coastal plain, Miller et
al. [2005] estimated a maximum long-term sea
level change of 70 m between the Late Cretaceous
and the present, an amplitude that is significantly
smaller than other published global estimates [e.g.,
Kominz, 1984; Haq et al., 1987; Miiller et al.,
2008b]. With higher-resolution seismic tomogra-
phy [Grand et al., 1997; Van der Hilst et al., 1997,
Ren et al., 2007], the Farallon slab is resolved in
the present-day at midmantle depths as a high
seismic velocity anomaly beneath eastern NAM.
In this paper, we investigate if both extensive
Cretaceous flooding of the interior of NAM and
the discrepancy between the Miller et al. [2005] sea
level estimates and other putatively eustatic esti-
mates can be explained by a single geodynamic
model that includes the dynamic effect of Farallon
slab subduction. This paper is a detailed investiga-
tion of this problem; preliminary results for the
inversion of the flat slab phase of Farallon subduc-
tion [Liu et al., 2008] and the subsidence of the
U.S. cast coast [Spasojevi¢ et al., 2008] have
recently appeared.

[s] We combine advances in mantle convection
modeling with stratigraphy, plate motion and
seismic tomography to better understand the rela-
tion of Farallon plate subduction and wvertical
motions and long-term sea level change. We use
the concept of separate frames of reference for the
mantle and plate to better link vertical motions to
the stratigraphic record, as demonstrated for the
evolution of Australia [Gurnis et al., 1998].
Second, in order to use the seismic constraints
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directly we implement adjoint (inverse) models of
convection [Bunge et al., 2003; Ismail-Zadeh et al.,
2004; Liu and Gurnis, 2008]. Third, we use a new
generation of plate reconstructions in which plate
margins continuously change with plate motion
(M. Gurnis et al., Global plate reconstructions with
continuously closing plate, manuscript in prepara-
tion, 2009). The dynamic models are constrained by
observations of paleoshorelines [Smith et al., 1994;
Bond, 1978], borehole tectonic subsidence [Pang
and Nummedal, 1995; Liu and Nummedal, 2004,
Liu et al., 2005] and isopach thickness [Cook and
Bally, 1975] in the WIS. In addition, we test the
models through the Cenozoic vertical motions of
the eastern United States using paleoshoreline anal-
yses [Spasojevic et al., 2008] and borehole-inferred,
regional sea level variations [Van Sickel et al., 2004;
Miller et al., 2005].

[6] Our new results include empirical analysis of
correlation between stratigraphy and seismic to-
mography, inferred values of effective temperatures
of the Farallon slab, a preferred viscosity profile
using stratigraphic constraints, and a post Late
Cretaceous differentiation between (dynamic) rel-
ative sea level and eustatic factors for NAM. In
addition, we compare our model predictions
against inferred sediment thicknesses for the west-
ern Canadian shield from the thermochronology of
basement samples [Flowers, 2009].

2. Observational Constraints

2.1. Tomography

[7] Seismic tomography constrains present-day
mantle convection, including the Farallon slab.
Global seismic tomography inversions reveal linear
positive seismic anomalics beneath the Americas
with shear (8) [Grand et al., 1997)] and compres-
sional (P) waves |Van der Hilst et al., 1997].
Although more blurred, global models with spher-
ical harmonic basis functions also detect this struc-
ture [Megnin and Romanowicz, 2000; Ritsema et
al., 2004]. Recent regional models that invert both
S and P wave travel times [Ren et al., 2007] or use
multiple-frequency P wave tomography [Sigloch et
al., 2008] reveal the Farallon remnants with similar
geometries. Given uncertainties in the detailed
structure of the slab and differences between S and
P sensitivity, all these models, especially ones with
block basis functions, agree on the spatial distribu-
tion, wavelength, and magnitude of the anomaly.
The present-day Farallon remnant largely strikes
north-south along the North American east coast

from Central America to the Arctic. In a map view, it
has a width of 500—1,000 km while extending from
800 to 2,000 km depth with typical S wave anomaly
ofabout 1%. In this study, we use an updated version
of a shear wave model [Grand, 2002].

[¢8] To convert tomography into density, we first
remove the signal above 250 km that correlates
with the craton, assuming it is neutrally buoyant
[Jordan, 1975; Goes and van der Lee, 2002].
Because we consider differential dynamic topogra-
phy, removal of this layer will not affect our
results. If this structure were attached to the mov-
ing plate and neither local convective instability
nor thickening/thinning of the layer were signifi-
cant, it would not change topography. We also
remove seismic structures below 2,400 km depth,
where there is a clear gap in the seismic image.
From 2,400 km up to 800 km, we adopt a constant
density to velocity perturbation ratio (section 4.1
and equation (5)), constrained by vertical motions.

2.2. Continental Stratigraphy and Sea Level

[¢9] The WIS has relatively well preserved Creta-
ceous sediments, mapped in outcrops and bore-
holes. As constraints to dynamic models, we use
paleoshorelines [Smith et al., 1994; Bond, 1978],
borehole tectonic subsidence curves [Pang and
Nummedal, 1995; Liu et al., 2005] and a Late
Cretaceous isopach [Cook and Bally, 1975]. The
WIS started developing in early Cretaceous by
southward transgression from the Arctic and north-
ward transgression from the Gulf of Mexico [Sloss,
1988]. By Late Cretaceous the WIS (Figure 1)
developed into a large epicontinental sea stretching
from the Gulf of Mexico to the Arctic, and having
a width of thousands of kilometers east-west [Smith
et al., 1994]. Using the boundary between pre-
served marine and nonmarine sediments, Smith et
al. [1994] defined eight paleoshorelines from Late
Cretaceous to present (at 95, 85, 70, 60, 45, 30, 20,
12 Ma). During Late Cretaceous, the western edge
of the seaway was located close to the Sevier belt
[Sloss, 1988; Liu et al., 2005], while the castern
shoreline migrated slightly eastward from 95 Ma
(Figure 1) to 70 Ma [Smith et al., 1994]. The retreat
of the seaway commenced at the end of Late
Cretaceous, and the inland sea withdrew completely
by carly Cenozoic [Smith et al., 1994]. We usc
digitized maps of Smith et al. [1994] for Latc
Cretaceous to qualitatively constrain the position
of the dynamic topography low associated with
subduction, as illustrated by the 95 Ma shoreline
reconstruction (Figure 1). We also use recon-
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Figure 1.

Position of data constraints used in the study. Pink line shows reconstructed 95 Ma paleoshoreline [Smith

et al., 1994], blue contours show total Late Cretaceous isopach [Cook and Bally, 1975] with 2000 ft contour interval,
and black line shows position of the Sevier thrust belt [Cook and Bally, 1975]. Black and red dots, marked as EW1—
EW6 and NS1-NS6, indicate location of boreholes of tectonic subsidence curves [Liu et al, 2005; Pang and
Nummedal, 1995]. Red dot marked NJ wells shows position of wells located on the New Jersey coastal plain [Miller
et al., 2005], and black dot marked COST-B2 indicate position of the offshore well used by Watts and Steckler [1979]
for sea level curve derivation. Blue dot marked TC indicates location of East Lake Athabasca thermochrology study

of Flowers [2009].

structed Miocene and Eocene shorelines clevations
[Bond, 1978; Spasojevi¢ et al., 2008] to infer dy-
namic subsidence of the U.S. east coast [Spasojevic
et al., 2008]. The total and tectonic subsidence in
borcholes have been inferred from 1-D subsidence
analysis after accounting for decompaction, changes
in water depth, custasy, and Airy isostatic back-
stripping [Liu et al., 2005; Liu and Nummedal,
2004; Pang and Nummedal, 1995]. We sclected a
total of 12 tectonic subsidence curves, six on an
cast-west profile (Figure 1, locations EW1-EW6)
in Wyoming [Liu et al., 2005], and six representa-
tive locations from Pang and Nummedal [1995]
(Figure 1; locations NS1 to NS6).

[10] Cook and Bally [1975] used outcrops and
boreholes between mid Cenomanian and the top
of the Macastrichtian to define three separate iso-
pach maps (mid Cenomanian to top Turonian;
Coniacian-Santonian; Campanian-Maestrichtian).

Since the spatial extent of these isopachs is similar,
we use a total Late Cretaceous isopach [Cook and
Bally, 1975] from mid Cenomanian to Maestrich-
tian. The area of late Cretaceous sedimentation is
approximately 1,300 km wide east-west, and
3,000 km north-south (Figure 1). The maximum
thickness of the total Late Cretaceous sediments is
around 3 km, with the thickest sediments (Figure 1)
located close to the Sevier belt [Sloss, 1988; Cross
and Pilger, 1978]. The oldest isopach (Upper Albian
to Santonian strata) is thickest along a north-south
trending depositional trough parallel to the Sevier
belt [Cross and Pilger, 1978). The remaining Upper
Albian to Santonian strata occurs more broadly with
thicknesses diminishing to the cast [Cross and
Pilger, 1978]. The younger isopach (Santonian to
Maestrichtian) was deposited throughout most of
the WIS, with its center in a broad region of southern
Wyoming, northwestern and north central Colorado
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and eastern Utah [Cross and Pilger, 1978]. There
was no prominent linear depositional trough parallel
to the Sevier belt in the Santonian to Maestrichtian
[Cross and Pilger, 1978].

[11] There is significant disagreement on the ampli-
tude of eustasy since the Late Cretaceous with
maximum long-term estimates varying between
70 m [Miller et al., 2005] to more than 250 m
[Hag et al., 1987]. Miller et al. [2005] made sea
level estimates based on the backstripping of sedi-
mentary sections at five boreholes on the New
Jersey coastal plain [Van Sickel et al., 2004] with
the maximum long-term sea level around 70 m.
High estimates of sea level with a maximum on
order of 250300 m are based on global correlations
of stratigraphic sequences [Hag et al., 1987; Hag
and Al-Qahtani, 2005]. Low estimates of 120 m are
based on backstripping of wells on the eastern NAM
continental margin [Watts and Steckler, 1979].
Kominz [1984] estimates global sea level from
changing mid ocean ridge volume, which matches
sea level required to flood continental interiors,
especially since the Eocene [Bond, 1979; Harrison,
1990]. The maximum amplitude of sea level change
according to Kominz [1984] is 220 m, slightly
higher than 213 m from an updated estimate [ Miiller
et al., 2008b].

2.3. Plate Motions

[12] We use GPlates reconstructions of global plate
motions at 1 Ma intervals, in which the plate
margins continuously evolve with self-consistent
velocities between plates and plate margins (Gurnis
et al., manuscript in preparation, 2009). The rota-
tion poles of Muller et al. [2008a] are used,
implemented in a moving hot spot reference frame.

[13] There has been significant discussion of the
influence of absolute reference frames on convec-
tion models [e.g., Quere and Forte, 2006]. The hot
spot reference frame [Morgan, 1971] is originally
based on the hypothesis that hot spots originate
from plumes that are fixed relative to the mantle
with no relative motion between them. The moving
hot spot reference frame corrects for known rela-
tive motion between different groups of hot spots
[O Neill et al., 2005], which results in significantly
different plate motions compared to the fixed ref-
erence frames prior to 80 Ma. The no-net-rotation
reference frame [Solomon and Sleep, 1974]
assumes uniform coupling between lithosphere
and asthenosphere. Conrad and Husson [2009]
propose that the sea level estimates from dynamic
models can be influenced by the implementation of

different absolute reference frames. However, since
we are examining dynamic effects of Farallon slab
subduction on NAM regional vertical motion, we
ensure that the reference frame we utilize is appro-
priate by requiring that temporal and spatial evolu-
tion of subsidence and uplift is well correlated by
NAM observations, as we will describe below.

[14] The reconstructions are global, but some of
the details within the NAM region are as follows.
At 100 Ma, the western margin of NAM is con-
tinuously converging from north to south. This
persists to 31 Ma, when the Farallon-Pacific ridge
intersects the Farallon-NAM trench [Atwater and
Stock, 1998], and the San Andreas Fault forms by a
small jump to the east in California. The transform
segment enlarges at the expense of the convergent
margin [Atwater and Stock, 1998] and the Juan de
Fuca to the north and the Cocos plates to the south
continuously shrink (Figure 2). In the south of our
region, the Caribbean reconstruction closely fol-
lows that of Pindell et al. [2006]. From 100 to
80 Ma, North and South America are separated by
a spreading center, while the Caribbean region
grows by the eastward motion of the Farallon plate
between North and South America. At 60 Ma, a
new trench and island arc initiates to subsequently
become the western margin of southern Mexico
and Central America [Pindell et al., 2006].

3. Simple Sedimentary-Tomography

Correlations

[15] If the anomalous Late Cretaceous vertical
motions were indeed related to dynamic topogra-
phy associated with Farallon subduction, then cor-
relations between the stratigraphic record and
Farallon slab imaged by seismic tomography may
be revealing. The Farallon slab is well defined at
mid mantle depths (800, 1,225 and 1,675 km) as a
positive S wave velocity anomaly, while the posi-
tion of the slab is less evident at a depth of 1,975 km
(Figure 2). Palcoshorelines and sediment isopachs
rotated to mantle frame of reference are poorly
correlated with the position of the slab at 800 km
and 1,975 km (Figure 2). Isopach at 100 Ma
correlates well with positive seismic anomaly at
1,675 km, while the 70 Ma isopach and shoreline
are moderately well correlated with positive seis-
mic anomaly at 1,225 km. Assuming that the
positive seismic anomaly corresponds to the sub-
ducted Farallon slab, we can infer that the originally
shallow-dipping slab causing flooding in the WIS
has been subducted to depths of approximately
1,200-1,700 km.
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Figure 2. Map view of correlation between present-day scismic tomography [Grand, 2002] and total Late
Cretaceous isopach [Cook and Bally, 1975] rotated back 95 and 70 Ma to mantle frame of reference. Positive seismic
anomaly associated with the Farallon slab is shown with dark gray shading, blue lines show total Late Cretaceous
isopach contours [Cook and Bally, 1975] with 2000 ft contour interval, and pink line indicates position of 95 Ma
shoreline [Smith et al., 1994]. Red lines show position of reconstructed plate boundaries from GPlates (Gurnis et al.,

manuscript in preparation, 2009).

[16] We define the correlation, C(d, t), between
total Late Cretaccous isopach and seismic tomog-
raphy at age t as:

O O
c(d;r):%fW s(n;t)-‘%(n;d) ()

n=1

where S(n, 1) is isopach thickness and dV,/V; is
seismic velocity anomaly at depth d, where the
summation is taken over N grid points. We
systematically determine C(d, t) for seismic
tomography at depths d = 700-2,800 km and t =
110-0 Ma. The value of isopach thickness S is
always positive, while values of seismic anomaly
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Figure 3. Correlation between seismic tomography
[Grand, 2002] and total Late Cretaceous isopach rotated
to mantle reference frame [Cook and Bally, 1975] for
depth interval 700—-2,800 km and time interval 110—
0 Ma. Correlation is normalized by maximum value of
C(d, t).

dV/V, vary between —1 and 1, with large positive
values being attributed to the Farallon slab. There-
fore, it is expected that maxima in C(d, t) are
obtained when the rotated isopach has the highest
level of correlation with positive seismic anomaly
associated with the Farallon slab.

[17] Isopach thickness and seismic velocity anom-
aly, normalized by the maximum value of C, are
strongly correlated during the Late Cretaceous for
depths 1,000—1,800 km (Figure 3). There is strong
anticorrelation between sediment isopach and seis-
mic tomography for the Late Cretaceous for depths
shallower than approximately 1,000 km. The cor-
relation increases with depth and reaches a maxi-
mum at around 1,500 km in the period 95—-80 Ma.
Maximum correlation at 100 Ma occurs at some-
what greater depths of 1,675 km. The correlation
decreases for depths greater than 1,700 km, and a
strong drop in the correlation at about 2,200 km
depth reflects the lowest extent of the Farallon
remnants in tomography. The correlation is signif-
icantly reduced for the period before 100 Ma and
after 55 Ma (Figure 3).

[18] The tomography-isopach correlation is spatial-
ly and temporally well defined, with a maximum
correlation at depths from 1,500 to 1,600 km,
implying that this portion of the Farallon slab
was probably subducting beneath the WIS during
Late Cretaccous. In addition, there is a general
trend of increasing depth correlating with increased
age, with the 80 Ma isopach having maximum
correlation at 1,525 km, and the 100 Ma isopach at

1,675 km. The increase of level of correlation close
to the core-mantle boundary is due to a large area
of positive seismic anomaly in this region.

4. Methodology
4.1. Adjoint Models of Mantle Convection

[19] We invert for mantle convection backward in
time with a method that uses a series of forward
and adjoint calculations. The forward model solves
for thermal convection within an incompressible
fluid with equations for conservation of mass,
momentum, and energy

V-u=0 (2)
VP+ V- (hVu)=r,alz (3)
%’ b VT, =kV2T, + H (4)

where u is velocity, P dynamic pressure, h dynamic
viscosity, I, ambient mantle density, a thermal
expansion coefficient, ¢ gravitational acceleration,
T, effective temperature, K thermal diffusivity, and
H internal heat production (negligible over 100 Ma).
Values of relevant parameters are given in Table 1.
[20] 7, is scaled from shear velocity anomaly
through a transfer function G by

Te -~ G{dV.v=V.\') (5)

We refer to T, as the effective temperature because
we are unable to uniquely invert for temperature
because of limited resolution of tomography and
compositional controls on the shear velocity.
Trade-off between seismic anomaly and grid
spacing exists below the tomographic resolution,
resulting in nonunique absolute seismic velocity
anomalies as well as underestimates of effective
temperature (assuming thermal seismic anomalies).

Table 1. Relevant Parameters Used in This Study
Parameter Symbol Value
Ambient mantle density 3340 kg/m®
Reference viscosity h, 1 x 10" Pas
Thermal expansion coefficient a 3% 10° 1/K
Gravitational acceleration g 9.81 m/s”
Thermal diffusivity k 10 °® m%s
Earth’s radius R 6371 km
Sedimentation rate SR 50 m/Ma
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However, since dynamic topography is most
sensitive to net buoyancy, the seismic ambiguity
does not adversely influence our inversion. In
addition to thermal effects, there is substantial
chemical heterogeneity in the mantle [Ni et al.,
2002; Ishii and Tromp, 2004; Trampert et al.,
2004] and the mapping between seismic anomaly
and temperature and density is likely to be both
depth- and geography-dependent. In the adjoint
models, the dynamic topography and its rate of
change are sensitive to density anomalies [Liu and
Gurnis, 2008] which could have both thermal and
compositional contributions. However, since the
inferred quantity is diffusive, we refer to it as
“effective temperature’”” as opposed to “effective
density”’. We have assumed the scaling in
equation (5) is depth-independent.

[21] The mismatch between predicted temperature
at the present, 7,, and the seismically inferred
temperature, T, is
zZ
O
J= T,-T Eza‘v (6)
¥

or the cost function. By solving a constrained
minimization problem with its Lagrangian function
constructed by appending equation (4) to equation (6)
(cf. Bunge et al. [2003], Ismail-Zadeh et al. [2004],
Liu and Gurnis [2008] and many other papers
in atmospheric sciences such as Talagrand and
Courtier [1987], Sun et al. [1991], and Sirkes and
Tziperman [1997]), we get the adjoint equation

@ - 2 _ o
—+u-VI +kV1 = Ty
@

O
T,dit—n)  (7)
where 1, the Lagrangian multiplier, is the adjoint
temperature and #; is the present time. As the
conjugate operator of the forward energy equation,
the adjoint model back-propagates the residual field
Ty—Tyto thc initial time, #;, where the com::bpondmg
vdocmt,s u are stored from the previous forward
iteration [Bunge et al., 2003; Liu and Gurnis, 2008].

[22] Starting with the temperature field scaled from
present-day tomography, we generate a first guess
to the initial condition with a simple backward
integration (SBI) of the forward model with gravity
and plate motions reversed. This initial condition is
subsequently updated according to a conjugate
gradient algorithm

i = 75— o916 ®

where { is the iteration number and g a damping
factor. The iteration process terminates upon
convergence of the cost function.

[23] We solve equations (2)—(4) and (7) with
CitcomS, a finite element code for solving ther-
mal convection [Zhong et al., 2000]. Plate
motions calculated at 1 Ma intervals and linearly
interpolated for intervening times are used as
boundary conditions. Other boundary conditions
include an isothermal surface and an isothermal,
free slip core mantle boundary. Liu and Gurnis
[2008] developed an adjoint version by modifica-
tions of CitcomS Version 2.0, obtamed from the
Computational Infrastructure for Geodynamics
(http://geodynamics.org).

[24] We use global flow models to avoid artifacts
associated with imposed vertical boundaries. Our
global model uses 12 caps with 129 x 129 nodes in
each cap (approximately 40 km resolution in map
view) and 65 grid points in radial direction. We also
designed a regional model that covers a domain
twice as wide (east-west) as NAM plate, allowing
the plate to move since 100 Ma with all observa-
tions remaining >1,000 km from the vertical
boundaries. The reflecting side boundaries caused
a lower mantle return flow restricting the horizontal
motion and resulting in Farallon slab positioned
further to the west in the Late Cretaceous compared
to the global model, implying that only global
models are suitable for this and similar studies.

4.2. Sedimentation Model

[25] The models are tested by comparing dynamic
topography (predicted stratigraphy) against obser-
vations. The model dynamic topography is rotated
into the plate frame of reference [Gurnis et al.,
1998]. During the initial step (100 Ma), we assume
an initial topography to which we add computed
dynamic topography; defining the initial shape of
basins and topographic highs. We impose eustasy
based on published curves initially SL(f,), assum-
ing marine deposition with constant rate (SR) in
areas topographically lower than the water surface.
The maximum sediment thickness Dzg deposited
during a time step, D¢, is:

Dzs = SR- Dt (9)

SR, 50 m/Ma (Table 1), is determined from the
total long-wavelength thickness of Late Cretaceous
isopach [Cook and Bally, 1975]. Since the ratio
between geoid and dynamic topography is small,
we assume a flat water surface [Gurnis, 1991]. We
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assume uniform thickness of sediments across the
basin. If the accommodation is less than allowed
isostatically, we only fill to the maximum allowed
value. We correct for Airy isostasy at the end of
each time step:

d=Dze 18 Tw (10)
Tpyy — Ty

where d is basin depth correction, rg, Ty and 1y
are density of sediments (2,300 kg/m?), water
(1,000 kg/m®), and mantle (3,300 kg/m®), respec-
tively. Isostatically adjusted topography becomes
the input into each subsequent time step. For steps
1 to n we add the differential dynamic topography
between steps n and n — 1, account for eustatic sea
level change SL(¢,), deposit sediments, and apply
the isostatic adjustment, until we reach the final
time step at 0 Ma.

[26] At each time step, we predict shoreline posi-
tion as the 0 m contour and track dynamic topog-
raphy at the position of each borehole. Cumulative
Late Cretaceous isopach thickness is calculated as
accumulated sediment thickness 100 to 65 Ma,
with sediment compaction being neglected. Fol-
lowing the inference of mantle properties, we will
determine the influence which initial NAM topog-
raphy and eustatic sea level have on the strati-
graphic predictions.

4.3. Constraining Mantle Properties

[27] The effective temperature scaling and mantle
viscosities are treated as free variables that we
attempt to constrain with dynamic topography
and its rate of change, with relations following
from the conservation of momentum and energy
(equations (3) and (4)):

h=CT, (1)
=2 p (12)
by,

where & is dynamic topography and A its rate of
change; C, and C, are numerical constants
obtained from the solution of flow and are
dependent on the viscosity and temperature
structure [Gurnis et al., 2000]. Derivation and
recovery of mantle properties with synthetic data
are given by Liu and Gurnis [2008].

[2s] We use two steps to constrain mantle proper-
ties. First the scaling between the magnitude of
seismic anomalies and effective temperature is

inferred, followed by the estimation of mantle
viscosities. For a given thermal anomaly (density)
in the upper mantle, equation (11) implies that the
magnitude of surface dynamic topography is line-
arly related to the amplitude of thermal anomalies.
This relation is not always valid since dynamic
topography depends on the ratio of upper/lower
mantle viscosity, but it is a good approximation for
active subduction [cf. Richards and Hager, 1984].
For Farallon subduction, the modeled dynamic
topography is associated with Cretaceous flooding
over a lateral scale >1,000 km which, as we will
show, requires the slab to be shallow and flat-lying,
and thus enabling a constraint on the amplitude of
T, (equation (11)).

[z¢] The upper mantle viscosity is inversely pro-
portional to the rate of change of dynamic topog-
raphy [Liu and Gurnis, 2008, equation 10], which
is constrained from stratigraphic data. Temporal
evolution of flooding (shown by paleoshorelines)
including its sudden appearance in the Late Albian
and gradual demise in the Late Cretaceous provide
constraints on mantle viscosity. Tectonic subsi-
dence rate extracted from the boreholes is equiva-
lent to the rate of change of dynamic topography in
the NAM frame of reference.

4.4. Subduction Parameterization

[30] We started with simple models that include a
3 layer viscosity profile: a lithosphere with a
viscosity of 5 x 10* Pa s above 100 km depth,
and an upper and lower mantle separated at 660 km
with viscosities to be constrained. We also use a
temperature-dependent viscosity, where a temper-
ature decrease of 200C results in an increase of
viscosity by one order of magnitude.

[31] In the SBI the cold “Farallon” anomaly rises
instead of sinks. By 70 Ma, within the upper
mantle, the cold material diverges and partly
deflects toward the east because of the reversely
imposed plate motions (Figure 4a), resulting in
geophysically unreasonable subduction inconsis-
tent with the temporal sequence of subsidence
and uplift of the WIS.

[32] In order to direct the Farallon slab toward the
oceanic plate on the surface we implement a stress
guide, a simple approach that couples the oceanic
plate with the Farallon slab using the viscosity
field. The implementation uses a high-viscosity
layer (HVL) overlain by a low-viscosity channel
(LVC) beneath the NAM plate [ Manea and Gurnis,
2007; Humphreys and Coblentz, 2007] with one
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Figure 4. Subduction modeling with inverse method. All cross sections are at 410N, with the velocity vectors (black
arrows) plotted over the temperature field (in color). Dynamic topography (blue) and plate motions (red) along the
profile are shown above the cross section. The black triangle denotes a borehole site (41.60N, 254F) that moves with
the continent. All runs have a lower mantle viscosity h;ys = 15, hy, = 1 and an effective temperature anomaly 7, =
160CC. (a) An SBI run with a standard model from present-day mantle structure leads to unrealistic subduction
geometry back in time, indicating the requirement of a stress guide. (b) A sketch of the parameterized stress guide
showing an imposed small viscosity (hy;) layer overlying a large viscosity (hg;) layer undemeath the continent,
where Lgq indicates the length of the guide. The recovered slab at 70 Ma (¢—¢) with the different values of Lgg
and (f-i) with various viscosity ratios (relative to 10*' Pa s) within the two layers, showing the solutions converge as
long as Lgg > 3,000 km and hyy: hy,< 0.1:50. (j) The evolution of the slab after five forward adjoint iterations
including a stress guide with Lgg = 6,000 km and hy;: hyy = 0.1:100, where reasonable subduction geometry
develops. (k) A free convection test showing that without the imposed plate motions and stress guide, the slab has
almost the same vertical velocities as can be scen from the depth of the structure at different times.

end of the HVL attached to the oceanic plate at the
trench (Figure 4b). The stress guide has a total
thickness of 150 km. The recovery of the slab is
almost identical in cases we explored as long as the
stress guide is longer than 3,000 km (Figures 4c—
4¢), while the HVL with a viscosity larger than 5 x
10%? Pa s always produce nearly the same slab
geometry (Figures 4f—4i). Imposed plate motion
and the stress guide neither increases nor decreases
the vertical velocities in models with plate motions
(Figure 4a) or with both plate motions and the
stress guide (Figure 4j), compared to those without
imposed plate motions (Figure 4k). With such a
stress guide, the adjoint method recovers the Far-
allon subduction while maintaining reasonable
subduction geometry over time while reproducing

the general characteristics of dynamic topography
(Figure 4j) (as described below).

5. Results

5.1. Effective Temperature Anomaly

[33] Comparing model results with stratigraphy we
attempt to bound three variables: upper mantle
viscosity hyys lower mantle viscosity hy s and the
scaling G between seismic shear velocity anomaly
and effective temperature 7,. Using a range of G
(1 % 10%, 2 x 10% 3 x 10’0 /km/s) which give
different effective temperature anomalies, we find
that the recovered slabs will have nearly identical
geometries if the lower mantle viscosity is com-
pensated so that the effective Rayleigh number
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Figure 5. Selection of the effective temperature through flooding predictions. (a—c) Recovered Farallon slab at
70 Ma with three different magnitudes of temperature anomaly (80, 160, and 2400, respectively) and lower mantle
viscosities largely traded off with temperature (7 > 10%!, 15 x 10!, and 30 x 10°' Pa s, respectively; all cases have an
upper mantle viscosity of 10°! Pa s), where all three models see the same slab geometries. (d) Reconstructed WIS
flooding (blue [Smith et al., 1994]) and sediment isopachs (black contours with 2,000 ft contour interval [Cook and
Bally, 1975]). (e—g) The predicted Late Cretaceous flooding with different T, with the 160 temperature anomaly
(Figure 5f) matching observations (Figure 5d) to the best extent.

remains invariant. In these cases, the convective
velocities were nearly the same, except for small
differences in the lateral variations in viscosity
associated with temperature. Although the dynamic
topography has the same spatial pattern, their mag-
nitudes differ (Figures 5a—5c¢). Predicted flooding
varies depending on dynamic subsidence: With an
effective temperature anomaly of 80CC, the flood-
ing occurs widely over the west at 95 Ma, but
disappears soon after (Figure 5e¢); with a larger
anomaly (240CC), the flooding is well correlated
with WIS, but persists after the Cretaceous (Figure
5g); the flooding is well predicted with an anomaly
of 160CC in both time and space (Figure 5f). The
effective temperature scaling is about G = 2 x
10°CC/km/s, giving an effective temperature anom-
aly of 160CC. This value will be used in subsequent
models.

5.2. Mantle Viscosities

[3¢] Once the effective temperature is constrained,
upper and lower mantle viscosities can be retrieved
from dynamic topography and its rate of change by
comparing the fit to borchole tectonic subsidence
and subsidence rate. We sclected models with lower
mantle viscosities hyy, between 1 x 10?2 Pa s and
3 x 10%* Pa s and upper mantle viscositics hyy
between 0.1 x 102! Pasand 2 x 10%' Pa s, which
are within the range of postglacial rebound-inferred
values [Milne et al., 2004; Mitrovica and Forte,
2004]. We tested models with lower mantle viscos-
itics as high as 6 x 10%? Pa s, but these models
yielded little or no flooding in the WIS.

[3s] We calculated the RMS misfit (Figure 6)
between tectonic subsidence and dynamic topog-

11 of 24



4l ~ Geochemist
‘@eﬁphysicsw( :3
N Geosystems

SPASOIEVIC ET AL ADIOINT CONVECTION MODELS OF NORTH AMERICA

10.1029/2008GC002345

A
o N,=15 5
600 -4 &00/-
E E
=400 - z400-
B ]
E =
w w
=
z &
200F 1 2008
-
0 ! L o i
0 0 60D 0 400 800 1200
Distance (km} Distance (km)
& D
W - A% k| E s 4% grw N
n UM_1 ,2 n un— 1 :2
GO0 = GO0 -
Nu=10t
E E
= 400/- g 400}
E E
oWl w
=
z z -
200 4 200 : 2
Thy=30" =
i 1 ] i
OD 200 400 600 UG 1200

Distance (km)

Figure 6.

i} B00
Distance (km)

RMS amplitude misfit between observed and model borehole tectonic subsidence. (a and b) Misfit for

models with constant lower mantle viscosity hyy, = 1.5 x 10** Pa s. (¢ and d) Misfit for models with upper mantle
viscosity hzas = 1-2 x 10°' Pa s. Grey vertical bar indicates intersection of N-S and E-W profiles. All viscosity
values are shown with respect to reference viscosity of 10*! Pa s.

raphy for ecach WIS borchole (Figure 1). While
holding hy s = 1.5 x 10** Pa s fixed, the largest
misfit for borehole subsidence is found for the
smallest upper mantle viscosity, hypr = 0.1 x
10*' Pa s (Figures 6a and 6b) because the model
subsidence is too large at the beginning of the Late
Cretaceous and too small from 70 to 60 Ma. A
larger upper mantle viscosity provides a better fit:
Along the E-W line (Figure 6a), a model with
hyar = 2 x 10%' Pa s provides the best prediction,
while for the N-S line (Figure 6b) hyp, = 1 x
10*' Pa s is the ?rcfcm:d value. Alternatively, by
fixing hyp = 10°' Pa s, the largest misfits occur
for the smallest lower mantle viscosity (hyr =1 x
10?? Pa s) (Figures 6¢ and 6d). Models with lower
mantle viscositics between 1.5 and 3.0 x 10** Pas
give borchole subsidence prediction with lower
RMS misfits (Figures 6¢ and 6d). There is a general
trend of the westernmost borcholes (Figures 6a
and 6b) having under predicted subsidences,
which could be related to proximity to the Sevier
belt (Figure 1) and supercrustal loading, which we
do not account for.

[36] Since change of dynamic topography con-
strains upper mantle viscosity, hys (equation (12)),
we compare the slope of tectonic subsidence curves

(subsidence rate) against model results (Figure 7)
by fitting a linear trend to the modeled and ob-
served subsidence. The agreement between model
predictions and observation vary significantly from
location to location at greater than the 95% confi-
dence level, indicating that this may not be the most
robust parameter for the selection of mantle vis-
cositics. However, we can confidently eliminate
certain models, and models with ratios of lower/
upper mantle viscosity that arc either too high or
too low. Specifically, the model with hy/hins =
30:1 (hypr = 1.5 x 10%2 Pa s and hypr = 0.5 %
10%' Pa s) (Figures 7a and 7b) and hyp/hyps = 10:1
(hzar=1.0 x 1022 Pas and hyp = 1.0 x 10%! Pas)
(Figures 7c¢ and 7d) can both be climinated on the
basis of subsidence rate.

[37] On the basis of the RMS misfit of tectonic
subsidence (Figure 6) and subsidence rate (Figure 7)
alone, there is no clear “best model™ that yields the
most robust fit. We therefore summarize the bore-
holes fits individually (Table 2) to define models
with overall consistency with data. A successful
model (pluses in Table 2) selection is based on
two criteria: the smallest RMS misfit and the
smallest discrepancy between observed and model
subsidence rate. Once summarized in this fashion,
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Figure 7. Comparison between observed and model subsidence rate. (a and b) Comparison for models with
constant lower mantle viscosity h;;,= 1.5 x 10%? Pa s. (¢ and d) Comparison for models with upper mantle viscosity
hppyy=1-2 x 10?! Pa s. Observation (data) curve is shows with black line, and models arc shown with colored lines.
Light blue colored outline indicates 95% confidence interval for the observation, and colored bars indicate 95%
confidence interval for a representative model, with all other models having similar confidence intervals. Grey
vertical bar indicates area of intersection of N-S and E-W profiles. All viscosity values are shown with respect to

. . 21
reference viscosity of 107" Pa s.

two models emerge (Table 2): (1) a model with
hza =3 x 1022 Pas and hy, =2 x 10*' Pa s and
(2) a model with hz,= 1.5 x 1072 Pa s and hyp, =
1 x 10*' Pa. In addition, models with upper
mantle viscosity smaller than 0.5 x 10%' Pa s never
fit borehole subsidence satisfactorily (Table 2).
Both models that yield good predictions of the
borehole subsidence have lower/upper mantle vis-
cosity ratio hyachpas = 15:1, suggesting that
differential dynamic subsidence (with respect to
97 Ma) constrains ratio of upper/lower mantle
viscosity. This tradeoff in absolute viscosities
occurs within a limited range related to data uncer-
tainties, .., the case with h;,, =6 x 10?2 Pa s and
hear=4 x 10?2 Pasis safely ruled out because the
borehole subsidence rates are all underpredicted.

[38] The final selection of the preferred upper and
lower mantle viscosities is based on the pattern of
Cretaceous flooding. One of the best fitting models
from borehole subsidence analysis (hy, = 10?! Pas
and hyy = 1.5 x 1072 Pa s) well predicts the
flooding (Figure 8b) in terms of the position of
WIS between 85 and 60 Ma (Figures 8a and 8b),

with individual borehole tectonic subsidence also
being well predicted (Figures 8g—8i). Decreasing
hyar to 3 x 10%° Pa s (Figure 8c) and further to
10*° Pa s (Figure 8d) results in eastward and
northward migration of flooding from 95 to
70 Ma, which is different from observations, where
the flooding remains in the same location through
the Late Cretaceous (Figure 8a). Smaller hy,,
values lead to insufficient flooding at 95 Ma and
excess flooding at 60 Ma (Figures 8c and 8d). Out
of two models with the best predictions of the
borehole subsidence, the model with hy,= 102" Pas
and hy,y=1.5 x 102 Pas gives the best predic-
tions of the Cretaceous flooding and subsequent
withdrawal of the interior seaway (Figure 8b). The
model with hya,=2 x 10%' Pa s and hys, = 3.0 x
10?2 Pa s predicts flooding at 95 Ma and 85 Ma
too far to the west (Figure 8e), and predicts a
withdrawal of the interior seaway around 70 Ma,
too early compared to the paleogeographic recon-
structions. The preferred model with hy = 10?! Pas
and hz;, = 1.5 x 10%? Pa s (Figure 8b) predicts
flooding that is too far to the west only at 95 Ma,
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Table 2. Summary of Misfits Between Observed and Model Tectonic Subsidence Based on RMS Amplitude and

Subsidence Rate Criteria®

EW Line NS Line
hy by Criteria 1 2 3 4 6 1 2 3 4 5 6 Total”

10 1 Slope + 2
RMS

15 0.1 Slope 0
RMS

15 0.3 Slope 0
RMS

15 0.5 Slope ]
RMS

15 1 Slope + ¥ + 8
RMS + + + + +

15 Y5 Slope + 1
RMS

15 2 Slope + 2
RMS +

20 0.3 Slope 0
RMS

30 1 Slope ! 1
RMS

30 2 Slope + + + ¥ 9
RMS -+ + + + +

“For cach well, we evaluated the model with the smallest misfits based on two criteria and marked it with a plus. Valucs of upper mantle viscosity
hy and lower mantle viscosity hya arc given with respect to reference value of 10*' Pas.

bTotal includes both slope and RMS criteria for cach well.

while the spatial localization of the flooding corre-
sponds to paleogeographic reconstructions at all
subsequent times.

[39] When the descent of the Farallon anomaly is
reversed from its present-day depth to the surface,
the structure traverses a much longer path through
the lower mantle compared to the upper mantle.
Thus, the lower mantle viscosity largely controls
the timing and position of flat slab formation during
Farallon subduction, and the position and timing of
Late Cretaceous flooding. When the lower mantle
viscosity is 3 x 10%> Pa s (Figure 8¢), the slab
remains in the lower mantle for a longer duration
leading to a smaller magnitude of dynamic topog-
raphy at 70 Ma with little flooding (Figure 8e). A
smaller lower mantle viscosity (10°* Pa s) allows
the slab to stay in the upper mantle longer, and this
leads to sustained flooding over an unreasonably large
area throughout the Late Cretaceous (Figure 8f).
Another aspect is the extent of the flat slab under-
neath the continent (Figure 4j): The slab stays for a
longer (shorter) period in a higher- (lower-) vis-
cosity lower mantle, so the flat subduction has a
smaller (larger) spatial extent as the overriding
plate moves toward the west at a given velocity.
This is reflected in the position of flooding, where
a lower mantle with a higher viscosity (Figure 8e)
shows a westward shift of flooding, and that with a

lower viscosity (Figure 8f) shows an eastward shift,
compared to intermediate value of lower mantle
viscosity (Figure 8b).

5.3. Influence of Eustasy and Initial
Topngraphy on Model Predictions

[40] Since the assumed eustatic curve may influ-
ence our results, we explored the sensitivity of this
assumption using our preferred mantle viscosity
model (b, =1 x 10*' Pas, h;,,=1.5 x 10** Pas)
(Figure 9). When we impose no eustatic change
(Figure 9b) or the Miller et al. [2005] sea level
curve (Figure 9c), we predict less widespread
flooding, comparing to one using the faq et al.
[1987] or Miiller et al. [2008b] curves (Figures 9d
and 9e). Initially (at 95 Ma), by imposing small
sea levels, we produce a narrower epicontinental
sea and more constrained flooding north-south
(Figures 9b and 9c), compared with predictions
using significantly higher (Figures 9d and 9¢) Late
Cretaceous sea levels. At 85 and 70 Ma, we predict
wider flooding east-west when we impose Haqg and
Al-Qahtani [2005] or Mildler et al. [2008b] sea
levels. All cases predict reduced extents of flooding
at 60 Ma compared to 95, 80 and 70 Ma, consistent
with overall withdrawal of the interior secaway at
the end of Cretaceous. However, in all cases
(Figures 9b—9e) we still predict widespread flood-
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Effects of mantle viscosities on flooding predictions and borehole subsidence. (a) Observed flooding

[Smith et al., 1994]. (b—q Predicted flooding with different models (parameters are given in the bottom right corner;

viscosities relative to10?
(black line).

ing during Cretaceous and subsequent early Ceno-
zoic withdrawal. Different sea levels give minor
differences in flooding patterns, implying that dy-
namic topography represents a primary control of
long-wavelength Late Cretaceous marine inunda-
tion within the interior of NAM, and that eustasy is
maybe secondary.

[41] Our flooding model starts with a given initial
topography and plays a significant role in the overall
results. Since little knowledge exists on NAM
topography during the Late Cretaceous, we used
several alternative initial topographies: A flat

Pa s). (g—1) Borehole subsidence predictions (colored lines) compared to observations

Earth (Figure 10b), present-day (Figure 10c), present-
day scaled by 0.5 (Figure 10d), and present-day
with Cretaceous sediments isostatically removed
(Figure 10e). To maximize flooding estimates, we
applied the Hag and Al-Qahtani [2005] curve. A
model with an initially flat surface (Figure 10b)
predicts a pattern and duration closest to the ob-
served (Figure 10b). When initialized with the
present-day topography, we obtain little flooding
(Figure 10c), even with the high-amplitude eustasy.
Similarly, when we use half value of the present-
day topography (Figure 10d) or that modified by
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Effect of custasy on predicted flooding. (a) Reconstructed flooding (blue [Smith et al, 1994]).

(b) Prediction with no change in sea level. (C) Prediction using Miller et al. [2005] sea level. (d) Prediction using
Miiller et al. [2008b] sea level. (e) Prediction using Hag and Al-Qahtani [2005] sea level. Black contours show Late
Cretaceous isopach [Cook and Bally, 1975] with 2000 ft contour interval. All predictions are using initially flat Earth

topography.

removal sediments (Figure 10e), we still under
predict Cretaceous flooding.

5.4. Dynamic Subsidence of the U.S. East
Coast

[42] Presently, the Farallon slab is imaged in the
midmantle under the U.S. cast coast (Figure 2),
creating a long-wavelength small-amplitude
dynamic topography low. Spasejevic et al. [2008]
analyzed Eocene and Miocene palcoshorelines,
suggesting at least 50 m, and probably as much
as 200 m of dynamic subsidence since the Eocene
(Figure 11), consistent with the discrepancy be-
tween regional and global sea level. Similarly,
Conrad et al. [2004] predict a modeled dynamic
topography low on the cast coast from the Farallon
slab, while Moucha et al. [2008] suggested that
the same region is not a stable reference frame

because of the effect of time-dependent dynamic
topography.

[43] All models that we explored, predict Tertiary
subsidence of the U.S. east coast (Figure 11).
Models that yielded the best fits to WIS borehole
subsidence (Figure 11, cases 2—3) predict 700—
900 m subsidence since the early Eocene, and
250 m since the early Miocene. Models scaling both
positive and negative S wave anomalies (Figure 11,
case 1) yield the largest estimate of post Eocene
subsidence. These models (Figure 11, cases 1-3)
overestimate the amount of subsidence, compared
with paleoshorelines and sea level discrepancies.

[44] In order to reduce dynamic subsidence since
55 Ma, we introduce an additional viscosity layer in
the uppermost mantle that was not required to fit
Late Cretaceous flooding and subsidence. This layer
extends from the base of the lithosphere to 410 km
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Figure 10. Effect of initial topography on predicted flooding. (a) Reconstructed flooding (blue [Smith et al., 1994]).
(b) Prediction using initially flat Earth topography. (¢) Prediction using present-day North America topography.
(d) Prediction using present-day North America topography multiplied by 0.5. (e) Prediction using present-day
topography with Cretaccous sediments isostatically removed. Black contours show Late Cretaceous isopach [Cook
and Bally, 1975] with 2,000 ft contour interval. All predictions are using Haq and Al-Qahtani [2005] sca level.

depth with a viscosity of 10%° Pa s, while the
transition zone has a viscosity of 10?! Pa s. Esti-
mates of dynamic subsidence since the early Eocene
for this four-layer mantle are 480—560 m (Figure 11,
cases 4-5), consistent with subsidence estimates
based on paleoshorelines and sea level discrepan-
cies. Models with an additional layer in the upper
mantle yield the same Late Cretaceous subsidence
and flooding as the three-layer models, given that
lower mantle viscosity is the same in both three- and
four-layer models, and that upper mantle viscosity
in the three-layer model is the same as transition
zone viscosity in the four-layer model.

6. Discussion and Conclusions

[45] The results presented here were obtained using
adjoint convection models for the evolution of the

Farallon slab since the Late Cretaceous, constrained
by seismic tomography and plate motions. The
algorithm implements an optimal first guess to the
initial condition, temperature-dependent viscosity,
and it is constrained by time-dependent and spatially
dependent stratigraphic data. A simple correlation
between NAM Cretaceous stratigraphy and seismic
tomography shows that Late Cretaceous total iso-
pach correlates well with present-day remnants of
the Farallon slab with maximum correlation at
depths 1,500—1,700 km. The maximum correlation
between large seismic velocities anomalies, pre-
sumed to represent the Farallon remnants, and Late
Cretaceous isopach rotated in the mantle frame of
reference, occurs at a depth of 1,525 km for a
rotation to 80 Ma and 1,675 km to 100 Ma. The
average descent velocity of the Farallon slab back
to 100 Ma and 80 Ma are 1.6 and 1.8 cm/a,
respectively. The smaller of the two velocities
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Figure 11. Predictions of the U.S. east coast sub-
sidence. Dynamic topography change for a well in New
Jersey coastal plain (coordinates 74730"W, 39CB0'N) for
five dynamic models is shown with colored dotted and
dashed lines. Solid red and blue lines show difference
between sea level models of Haq and Al-Qahtani [2005]
and Miller et al. [2005] and Kominz [1984] and Miller et
al. [2005], respectively. Blue colored boxes show
estimated subsidence range from paleoshoreline analysis
for Eocene and Miocene. Inset shows model parameters
(h, viscosity; LM, lower mantle; UM, upper mantle
viscosity; dVg/Vs, seismic anomaly with positive (+) or
both positive and negative (%) signals included).
Dynamic topography was calculated as if were an
interface between mantle and water.

averaged over the longer time period implies that
the Farallon slab has a slower vertical speed in its
early stage of subduction between 100 and 80 Ma.
The rather fast convergence of the Farallon and
NAM plates during this time, therefore, suggests
that the Farallon plate must have been moving
faster laterally than vertically, consistent with flat
subduction epoch [e.g., Saleeby, 2003].

[46] In order to obtain reasonable subduction
geometry, we parameterized a stress guide. By
computing a range of cases in which the thickness,
length, and strength of the guide were varied, we
found that the onset of flat lying subduction was not
strongly affected by stress guide details as long as
one was incorporated. The variation in upper and
lower mantle viscosity and seismic scaling had a
larger influence. How slabs are represented can be
improved. First, seismic models showing the con-
nection of the Juan de Fuca slab to the Farallon
anomaly are improving [e.g., Roth et al., 2008].
This should allow one to use a purely seismic-based
approach to define present structure. Second, for-
ward models incorporating realistic rheologies are
improving [Billen, 2008], and so higher-resolution
methods will eventually be used in inversions as
improvements in hardware and software allow.

[4+7] We attempt to infer upper and lower mantle
viscosities iteratively with stratigraphic constraints.

The misfit with observed subsidence and its rate of
change allow us to narrow the range of viscosities,
with the preferred values primarily based on flood-
ing. Our preferred viscosity model has an upper
mantle viscosity of 1 x 10*' Pa s, and a lower
mantle viscosity of 1.5 x 10** Pa s. These repre-
sent background viscosities locally modified by the
Farallon slab. Consequently, the average profiles
inferred from post glacial rebound and the present-
day geoid are more complex in depth [Mitrovica
and Forte, 2004] than ours. Thus, the ratio of
mantle viscosities across 660 km discontinuity in
our preferred model is 15:1, slightly smaller than
the factor of 30 or more suggested using the geoid
as a constraint on instantaneous flow models
[Hager, 1984; King and Masters, 1992]. However,
the values we propose for effective viscosities
under NAM are within the range proposed through
studies of postglacial isostatic adjustment. Milne et
al. [2004] define range of upper mantle viscosities
between 5 x 10%° Pa s and 10?' Pa s, and lower
mantle viscosities between 5 x 10*' Pas and 5 x
10?2 Pa s. Comparing to the values proposed by
joint inversion of convection and glacial isostatic
adjustment data [Mitrovica and Forte, 2004], our
effective upper mantle viscosity is equivalent to the
value proposed for the bottom of the upper mantle
and top of the lower mantle, while the proposed
lower mantle viscosity has the same value as the
one defined by Mitrovica and Forte [2004] for the
depth range of roughly 2,200—2,500 km.

[4s] Downwelling associated with subduction of
the Farallon slab creates a dynamic topography
low in the western interior during Cretaceous
(Figure 12b). The dynamic topography low
migrates eastward from 100 Ma to the present in
the NAM frame of reference. Over the Late Creta-
ceous, the dynamic topography low has the largest
amplitude (up to 1.5 km), and is located in the area
of WIS. This dynamic topography low is inundated
by epicontinental seas, resulting in widespread
Cretaceous flooding (Figure 12c¢). Since there is
disagreement between different authors on the
amplitude of the global sea level since the Late
Cretaceous, we model Cretaceous flooding with
different sea level curves [Miller et al., 2005;
Miiller et al., 2008b; Haq and Al-Qahtani,
2005]. We obtain flooding patterns that match
long-wavelength features of shorelines that vary
in amplitude from 0 to 250 m depending on the
assumed custasy (Figure 9). On the basis of the
analysis of observed sediment thickness and
custatic sea level, Bond [1976] also proposed that
North America experienced significant continental
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Evolution of the Farallon plate subduction viewed in the NAM reference frame. This model has a

viscosity of the upper mantle at 10°° Pa s, of the transition zone at 10%' Pa s, and of the lower mantle at 1.5 x 10" Pas
and an effective temperature anomaly of 160C. (a) Slab geometries at different depth, where the background color
represent the temperature field at depth denoted at the left margin and color contours show boundaries of the slab at
different depths. (b) The associated surface dynamic topography. (c¢) Predicted continental flooding at different
geological times using initially flat continent at 100 Ma and Haq and Al-Qahtani [2005] sea level.

submergence. The long-wavelength dynamic sub-
sidence on order of 1,500 km was attributed to
subduction of the Farallon slab [Mitrovica et al.,
1989; Liu et al., 2005; Liu and Nummedal, 2004].
However, our results suggest that the first-order
flooding patterns of the WIS is controlled primarily
by long-wavelength dynamic topography attributed
to the subduction of the Farallon slab, with custasy
playing a smaller role. Short-wavelength flexural
loading component that changes on the time scale
of a few million years has been attributed to the
loading of the thrust belt [Liv and Nummedal,
2004], not accounted for in our models. However,
this component probably plays an important role for

controlling sediment deposition on short length
scales over hundreds of km [Currie, 2002], and it
is not a primary factor affecting long-wavelength
flooding.

[49] As the Farallon slab continues sinking under
the continent during Cenozoic, NAM moves west-
ward in the mantle reference frame over this
downwelling. A dynamic topography low, there-
fore, moves eastward in the NAM frame of refer-
ence. At 40 Ma (Figure 12b) the dynamic topography
low is located under the central portions of the
continent, while at the present day the dynamic
topography low is located under the U.S. east coast
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(Figure 12b). As the locus of dynamic topography
moves eastward from WIS at the end of Creta-
ceous, flooding is reduced and the interior seaway
eventually vanishes, and no significant flooding is
developed in the interior of the NAM during
Cenozoic, as suggested by paleogeographic recon-
structions [Smith et al., 1994]. A region of high
dynamic topography subsequently develops in the
western North America during the Cenozoic, con-
tributing to the overall uplift of the region previ-
ously located in WIS. The Laramide orogeny
started in the Late Cretaceous, 70 to 80 Ma ago
[Bird, 1998], and ended 35 to 55 Ma ago, although
the exact timing is under discussion [English and
Johnston, 2004]. The region affected by the orog-
eny extends from Alaska to northern Mexico,
forming the Rocky Mountain fold-and-thrust belt
in Canada and the United States, and the Sierra
Madre Oriental fold-and-thrust belt in east-central
Mexico [English and Johnston, 2004]. Dynamic
effects of flat slab subduction have been suggested
as one of possible driving mechanisms for Lara-
mide uplift [English and Johnston, 2004], along
with other mechanisms such as retroarc thrusting,
effects of Cordillerean collision [English and
Johnston, 2004], or crustal processes (such as
horizontal shortening, magmatic injection or
lower crust displacement) or partial delamination
of the lithosphere [McQuarrie and Chase, 2000].
Mitrovica et al. [1989] proposed that the interior of
NAM rebounds and uplifts after convergence slows
down or ceases because of the detachment of the
slab or accretion of a terrane. Our model predicts a
continuous contribution of high dynamic topogra-
phy to the overall uplift of the region once occu-
pied by the WIS since the end of Late Cretaceous.

[s0] Heller et al. [2003] analyzed widespread con-
glomeratic units that were deposited in Mesozoic
and Cenozoic over large length scales in NAM,
recording regional tilts of the continent, associated
with 400—800 m of differential uplift on areas as
wide as 800 km and in time periods of 1 to 10 Ma.
Westward movement of the plate in the mantle
frame of reference over a downwelling created by
Farallon slab subduction and associated change of
dynamic topography (Figure 12b) provides a
dynamic model that could potentially explain tilting
of sedimentary units, such as gravel deposits over-
lying the Morrison Formation in the Rocky Moun-
tains [Heller et al., 2003] and gravel-rich Ogallala
Group of Miocene-Pliocene age in Western
Nebraska and southern Wyoming. Heller et al.
[2003] suggest that rarity of preserved evidence of
the widespread units could be attributed to either

low preservation potential of the conglomeratic units
or relatively unusual episodes of tilting. Our model
suggests that the tilting due to development of
differential dynamic uplift should be a continuous
process. Thus, the absence of more geological evi-
dence of the widespread conglomeratic units [HHeller
et al., 2003] could be related to limited preservation
potential in an environment that is continuously
uplifting and being exposed to erosion.

[s1] Presently, the dynamic topography low is lo-
cated under the east coast, and all models we
computed predict overall subsidence during the
Cenozoic. The accumulated subsidence on the east
coast due to the sinking of the Farallon slab remnant
during the Cenozoic is on the order of 500 m, with
approximately 250 m of subsidence occurring since
the end of Eocene. Analysis of Eocene and Miocene
paleoshorelines indicates that these paleoshorelines
have present-day elevations 50—-200 m lower than
respective sea levels in these time intervals, which
is consistent with the overall subsidence of the east
coast [Spasojevic et al., 2008]. The proposed
dynamic subsidence can possibly explain the dis-
crepancy between the Miller et al. [2005] sea level
curve and other eustatic curves [Spasojevic et al.,
2008]. Geodynamically, the region of the U.S. east
coast is not stable over longer time scales because
of the sinking of the Farallon slab and should not
be used as a type-locality when determining global
sea level curves, as also suggested by others
[Moucha et al., 2008; Miiller et al., 2008b].

[s2] We fit a wide range of Late Cretaceous stratig-
raphy in an adjoint model with a simple viscosity
structure, including fewer layers than sometime used
[e.g., Mitrovica and Forte, 2004]. However, to obtain
more realistic amplitudes of dynamic subsidence on
the U.S. east coast, our model requires an introduc-
tion of an additional low-viscosity la%rer below the
lithosphere, with a viscosity of 1 x 10%° Pa s. Models
with this extra layer of low-viscosity upper mantle
produce the same patterns of Late Cretaceous flood-
ing (Figure 12¢) and subsidence as those without
(Figure 8b). This indicates that more layers of mantle
radial viscosity structure can be inferred when incor-
porating constraints over a larger time scale. Our
scheme for constraining upper and lower mantle
viscosities using stratigraphy combines quantitative
and qualitative criteria iteratively. In the future, as
databases with stratigraphic data are expanded, and as
adjoint modeling capabilities and tomography mod-
els are improved, it may be possible to develop a fully
automated scheme that iteratively updates mantle
structure.
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Figure 13. Time-dependent predictions of dynamic
subsidence for East Lake Athabasca region (coordi-
nates 1080W, S9005'N) for two dynamic models.
Values of upper mantle viscosity hyy and lower
mantle viscosity h"‘N are given with respect to
reference value of 10°" Pa s.

[s3] Predictions of Cretaceous flooding from mod-
el dynamic topography are dependent on the as-
sumption of initial topography of NAM. When we
use present-day topography, we cannot predict any
significant flooding of the western interior over the
Cretaceous, even when we impose the highest
proposed eustatic sea levels [Hag and Al-Qahtani,
2005] since 100 Ma. The widespread Cretaceous
flooding [Sloss, 1988; Smith et al., 1994] can be
reproduced from dynamic topography only when
initial topography was flat or with a gentle relief.
This implies that the Late Cretaceous topography
was very different from the present day, where
most of the western portions of the continent,
especially the region once occupied by WIS, was
probably low lying at 100 Ma. This is consistent
with previous inferences since a significant part of
the continent has been uplifted since 70—-80 Ma
[McMillan et al., 2006; English and Johnston,
2004; Mitrovica et al., 1989] and this uplift has
been especially significant in the western interior.
However, the details of paleoelevation of the WIS
are controversial. Structural and unroofing history
studies of the Laramide mountains suggest that
1.5—-3 km of relief was produced during Paleocene
and early Eocene [DeCelles et al., 1991]. This is
supported by d'®0 analysis of apatite [Fricke,
2003], which suggests that the Laramide mountain
regional paleoelevation in Wyoming in the early
Eocene was on the order of 475 m, and that most of
the high present-day elevation developed since the
early Eocene. Dettman and Lohmann [2000], on
other hand, use the study of d'®0 of river waters
from the Late Cretaceous and Paleogene basins of
Alberta, Montana, Wyoming and Colorado using
aragonite mollusk fossils, concluding that the esti-

mated altitude difference of river profiles is similar
to the present-day value, suggesting that WIS had
significant paleoelevation [Dettman and Lohmann,
2000].

[s4] The western Canadian shield (Figure 1) is
located at the edge of the region of influence of
Farallon subduction (Figure 12). In order to infer
burial history, Flowers [2009] analyzes the role of
radiation damage on apatite (U-Th)/He ages of
basement samples on the Canadian shield (near
East Lake Athabasca). She proposes that > 1.0 km
of late Paleozoic-Mesozoic strata were deposited in
the East Lake Athabasca region, hundreds of kilo-
meters east of the preserved extent of sediments of
the same age. These sediments have presumably
been subsequently removed during periods of
uplift. In addition, on the basis of thermochronol-
ogy, deposition of more than several hundred
meters of sediments during Cretaceous was unlikely
[Flowers, 2009]. Two models preferred by the
analysis of the borehole subsidence in the WIS
predict a total of 600 m of subsidence in Late
Cretaceous—early Cenozoic in the East Lake
Athabasca region, followed by subsequent uplift
(Figure 13). The maximum depth of depression
created because of dynamic topography is 280 m,
assuming a flat initial topography. Accounting for
isostasy, the maximum thickness of potentially
deposited sediments is 650 m, if the whole sur-
rounding region was at sea level. This value is
similar to one proposed by Flowers [2009], indi-
cating that dynamic models can be used in con-
junction with thermochoronology to infer regions
that have been inundated in the past, but where
the sedimentary record has been subsequently
removed.

[ss] Our inverse dynamic models based on seismic
tomography, reversed to the Late Cretaceous, show
the formation of flat subduction associated with
broad surface dynamic subsidence [Liu et al.,
2008]. The model best fitting Cretaceous stratigra-
phy displays a flat to shallow-dipping slab extend-
ing ~2,000 km inland at around 70 Ma (Figure 4b).
By further attempting to fit the models to east coast
subsidence, requires weaker upper mantle, but the
evolution of the Farallon slab and associated Late
Cretaceous dynamics remains similar (Figure 12) as
in models with simpler vertical viscosity model
(Figure 8). Our model reproduces a flat slab that
correlates well with the region of basement cutting
Laramide-type faults in the western U.S. from 80 to
65 Ma [Saleeby, 2003]. Beyond the flat slab, there is
a vast zone of shallow dipping subduction that
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extends more than 1,000 km eastward and north-
ward especially from 90 to 70 Ma (Figure 12a). The
zone is significantly larger than inferred from a
simplified set of forward models that neither incor-
porated the details of subduction nor attempted to
match stratigraphy [Bunge and Grand, 2000].
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