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Abstract

We analyze the kinematics of fault-tip folding at the front of a fold-and-thrust wedge 

using a sandbox experiment. The analog model consists of sand layers intercalated with low 

friction glass bead layers, with a total thickness h = 4.8 cm, deposited in a glass sided 

experimental device. A computerized mobile backstop induces progressive horizontal shortening 

of the sand layers and consequently thrust fault propagation. Active deformation at the tip of the 

forward propagating basal décollement is monitored along the cross section with a high 

resolution CCD camera, and the displacement field between pairs of images is measured from 

the optical flow technique. In the early stage, when cumulative shortening is less than about h/10,

slip along the décollement tapers gradually to zero and the displacement gradient is absorbed by 
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distributed deformation of the overlying medium. In this stage of detachment-tip folding, 

horizontal displacements decrease linearly with distance towards the foreland. Vertical 

displacements reflect a nearly symmetrical mode of folding, with displacements varying linearly 

between relatively well-defined axial surfaces. When the cumulative slip on the décollement

exceeds about h/10, deformation tends to localize on a few discrete shear bands at the front of the 

system, until shortening exceeds h/8 and deformation gets fully localized on a single emergent

frontal ramp. The fault geometry subsequently evolves to a sigmoid shape and the hanging wall 

deforms by simple shear as it overthrusts the flat-ramp system. As long as strain localization is

not fully established the sand layers experience a combination of thickening and horizontal 

shortening which induce gradual limb rotation. The observed kinematics can be reduced to 

simple analytical expressions that can be used to restore fault-tip folds, relate finite deformation

to incremental folding, and derive shortening rates from deformed geomorphic markers or 

growth strata. 
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1.  Introduction 

Abandoned fluvial or alluvial terraces, as well as growth strata can be used to determine

incremental deformation associated with active folds [e.g., Rockwell, et al., 1988; Suppe, et al.,

1992; Hardy and Poblet, 1994; Molnar, et al., 1994; Hardy, et al., 1996; Storti and Poblet, 1997; 

Lavé and Avouac, 2000; van der Woerd, et al., 2001; Thompson, et al., 2002]. If a unit can be 

traced all the way across a given fold it can be used to estimate uplift since its deposition, and 

then to derive the corresponding average shortening from a mass balance calculation 

[Chamberlin, 1910; Epard and Groshong, 1993] (Figure 1). Although this geometrical approach 

can be used to estimate cumulative shortening, it can only rarely be applied to geomorphic

markers since a terrace record is often discontinuous and buried below younger sediments in the

foreland or in piggyback basins. An alternative approach consists in fitting the terrace record 

from a model of folding constrained from pre-growth strata (structural measurements or 

subsurface data). This approach has been applied to fault-bend folds (Figure 2A) assuming that 

the hanging wall deforms by flexural-slip folding [Lavé and Avouac, 2000; Thompson, et al.,

2002]. In such a case, where both bed length and thickness are constant, the local uplift U 

relative to the footwall, assumed rigid, obeys 
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)(sin)()()( xzRbxixU (1)

where x is the distance along the section line i(x) is the river incision since terrace abandonment;

b is the base level change since terrace abandonment (positive upward); (x) is the local bedding

dip angle; and R(z) is the horizontal shortening since terrace abandonment of the layer at

elevation z, which crops out at distance x from the trailing edge of the section (Figure 1). Base 

level change may lead to either entrenchment (b<0) or aggradation (b>0) in the foreland. On the 
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sketch in Figure 1, we have assumed no bed-parallel shear away from the fault zone, hence R is 

independent of z. In that case, estimating R does not require a continuous terrace profile and it is 

sufficient to use only a few independent estimates of the entrenchment rate at places with 

different dip angles in the zone where the bedding is already parallel to the fault plane (i.e.

backlimb of the fold represented in Figure 1). In principle, estimates of incision rate at at least

two points with different dip angles are necessary to derive both R and b [Thompson, et al.,

2002]. When sufficiently complete terrace records are available, the relationship expressed by (1) 

is testable since it predicts that uplift and the sinus of the local bedding dip angle, sin( , are 

proportional. Irrespective of the geomorphic record, it is important to note that this approach 

does not apply all along the profile of the fold, but only where the bedding is parallel to the fault 

plane (Figures 1 and 2B).
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Fault-tip folds can develop by distributed pure shear, with requisite bed length and 

thickness changes associated with limb rotation [Dahlstrom, 1990; Erslev, 1991; Poblet and 

McClay, 1996; Mitra, 2003], or by kink-band migration and bed-parallel simple shear, as in the

case of fault-propagation folds [Suppe and Medwedeff, 1990; Mosar and Suppe, 1992]. In either 

case, beds near the surface are not everywhere parallel to the thrust fault at depth, so that 

equation (1) does not hold in places like the fold forelimb in Figure 1. Figure 2B shows a number

of acceptable kinematic models of fault-tip folds, all based on the assumption of mass

conservation. Most of these models are commonly used to guide interpretation of structural 

measurements or seismic profiles  [Erslev, 1991; Mosar and Suppe, 1992; Wickham, 1995; Storti

and Poblet, 1997; Allmendinger, 1998; Allmendinger and Shaw, 2000; Brooks, et al., 2000; 

Zehnder and Allmendinger, 2000; Mitra, 2003]. In contrast to these purely geometric models,

some authors have explored the possibility of modeling folds from the theory of elastic 
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dislocations in an elastic half-space [Myers and Hamilton, 1964; King, et al., 1988; Stein, et al.,

1988; Ward and Valensise, 1994; Savage and Cooke, 2004]. Although any of these various fold 

models might be used to analyze growth strata or deformed alluvial terraces and retrieve the 

kinematic history of folding, two difficulties generally arise. One is that the choice of a 

kinematic model is not straightforward, even when growth strata geometry is well constrained. 

The other is that the mathematical implementation of these models and the adjustment to field

data is generally not simple. For these reasons, we seek a simple alternative relationship linking

local uplift and/or bedding tilt to structural geometry. This relationship must be applicable across 

an entire structure and must be grounded in realistic fold kinematics or mechanics. For this 

purpose, we analyze folding produced in an analogue experiment to derive some kinematic

model.
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It has been observed that the formation of the most frontal ramp in analogue models of

wedge mechanics [Dominguez, et al., 2001] is preceded by a phase of distributed deformation

which resembles fault-tip folding.  We therefore focused the present study on this particular 

phase, assuming it can be considered to simulate the kinematics of the early stage of fault-related

folding at the natural scale.  With this aim, we used a new experimental set-up that allows

accurate measurements of fault slip kinematics and of the associated deformation field 

[Dominguez, et al., 2003].

We first present the experimental set-up and the principles of the approach. We then 

describe in detail the evolution of incremental deformation during a representative experiment

selected among more than 10 performed experiments, and derive some simple analytical

approximations. Finally, we propose and test a procedure that can be used to restore incremental
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or cumulative deformation across fault-tip folds. All variables introduced in the analysis are

listed and defined in Table 1.

2.  Experimental Set-up 

The physical properties of dry sand and glass beads ( s ~ 30°, low cohesion, time

independent mechanical behaviour) make them good analogue materials to simulate brittle 

deformation of the upper crust at the laboratory scale [e.g. Malavieille, 1984; Mulugeta, 1988; 

Mulugeta and Koyi, 1992; Koyi, 1995; Gutscher, et al., 1998; Dominguez, et al., 2000; Adam et 

al, 2005; Konstantinovskaia and Malavieille, 2005]. Experiments where the layers are overlying 

a rigid basement and are subjected to horizontal shortening produce a self-similar accretionary 

prism analogous to accretionary prisms formed along subduction zones or in intracontinental 

fold-and-thrust belts [Chapple, 1978; Davis, et al., 1983; Lallemand, et al., 1994; Gutscher, et 

al., 1998]. These experiments lead to the formation of imbricated thrust sheets that gradually 

accrete to the wedge as the detachment propagates forward. In the absence of cohesion this

process and the resulting geometries are scale independent. However, given the estimate of the

cohesion of the material used in this experiment (Co<50 Pa) and the typical cohesion of crustal 

rocks (Co>20MPa [Lallemand, et al., 1994; Schellart, 2000], the scaling factor can be estimated

to about 105. Accordingly, 1 cm in the model is equivalent to about 1 km in nature. 

The model box is 20 cm wide and 100 cm long and equiped with transparent side walls 

treated to reduce friction [Dominguez et al., 2001]. The model comprises 6 sand layers, each 6-7 

mm thick, intercalated with 5 glass bead layers, each 2 mm thick. The total model thickness, h, is

4.8 cm. We use this layering to simulate natural lithologic intercalations and stratigraphic 
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discontinuities, and to facilitate layer parallel shear, a process which is thought to be key to 

folding of sedimentary layers at the natural scale.

The sand and glass bead layers are deformed in front of a moving backstop activated by a 

step motor at a constant velocity of 235 ± 10 μm per minute (1.4 cm/h (Figure 3). The cohesion 

and friction angle of the materials was provided by the manufacturers (SIFRACO and 

EYRAUD) and also measured in our laboratory [Krantz, 1991; Jolivet, 2000; Schellart, 2000]. 

The sand has a fluvial origin with irregularly rounded grain shapes and sizes from 150 to 300 

μm. Its internal friction angle is 30˚ to 35˚ (tan( s)=0.6 to 0.7) and its cohesion is low (Co < 50 

Pa). The glass beads are SiO2-Na2O, cohesionless microspheres with grain sizes ranging from 

50 to 150 μm and an internal friction angle between 20˚ and 25˚ (tan g=0.35 to 0.45). The model

is built on a 2 cm thick, horizontal ( =0) polyvinyl chloride (PVC) plate. The basal friction along 

the sand/unpolished PVC interface is 21˚±4° (tan( b= 0.38) [Jolivet, 2000]. 

Our experimental set-up was designed so as to measure, with the maximum possible

accuracy, the deformation at the tip of the basal detachment and the formation of a new thrust 

fault at the front of the wedge. In order to avoid episodic re-activation of older internal faults and

force the deformation to be localized at the very front of the wedge, we started the experiment

with a 10° pre-deformation sandwedge. In experiments run with the same layering as the one

described here we observed the formation of a wedge with a slope of 8-9° which is

approximately the critical slope of about 8° of a homogeneous wedge predicted from the critical 

wedge theory given the value of the basal friction angle, b, of 21° and the value of the internal

friction angle, s, of 30° for the sand mass [Davis, et al., 1983]. This shows that the layering does 

not modify significantly the mechanical behavior of the accretionary wedge and that coulomb

wedge theory can still be applied.
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We focus on the foreland edge of the wedge, which grows by the forward propagation of 

the basal décollement. This part of the experiment is located about 15 cm from the backstop and, 

to ensure maximum spatial resolution, is the only portion of the experiment monitored with the

video system (box in Figure 3). By comparing the imposed displacement of the backstop with 

displacements measured within the zone monitored by the video system, we find that during the 

selected experiment about 98% of the shortening is absorbed by internal deformation within the

monitored frame. Photographs are taken with a constant sampling rate of 1 image/minute with a 

6.3 megapixels CCD camera. The pixel size is 80 by 80 m². Given that the backstop velocity 

and the sampling rate are constant, the incremental shortening between two successive images is 

constant and equals 235 +/- 10 m. The displacement field between two successive images is

measured from the optical flow technique, which was introduced by Horn and Schunk [1980] 

and commonly used in remote sensing and image processing for robotic applications. It applies 

to images with a brightness pattern that evolves only due to deformation of the medium, as is the

case of our experiment. The technique allows a subpixel accuracy and appears more powerful

than more recent correlation techniques such as Particle Imaging Velocimetry [Adam, et al.,

2005].  It is based on the fact that the image F at time t+dt, can be written: 

17 dXtFtFdttF )()()(    (2) 

where dX is the displacement field and F(t) is the spatial gradient of image F(t). Equation (2)

is only an approximation because higher order terms in the Taylor-Lagrange development are 

neglected. The gradient is estimated from Rider’s method [Press, et al., 1995]. The technique 

was first applied to the analysis of sandbox experiments by Dominguez, et al. [2001].
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The displacement field varies smoothly and the signal to noise ratio is better when it is

measured over few images (typically over 2-3 images). The correlation window is 32*32 pixels, 
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and is moved by increments of 8 pixels across the whole image. The displacement field thus

contains 350*149 independent measurements, with a sampling (or spatial) resolution of 640 m.

Based on calibration tests, errors on measurements are statistically estimated to be less than 5 %.

The horizontal and vertical components of the displacements are plotted separately and used to 

generate various representations such as displacement vectors or incremental deformation of a 

virtual grid (Figures 3 and 4). Because the measurements are made from pairs of images

separated by variable time lags, incremental displacements are normalized by dividing them by 

the number of time steps (1 step corresponding to two successive images). Displacements are 

thus expressed in millimeters per step (mm/step), a step corresponding to a shortening of 235 +/- 

10 m, and are thus equivalent to normalized velocities. For our analysis we examine profiles

across the horizontal and vertical displacement fields at different depths above the décollement.

Surface processes are not simulated in the model. Therefore, the analogue experiment

does not directly reproduce growth strata nor deformed terraces.  However, the mathematical

description of folding derived from this experiment, as detailed below, can easily be used to 

simulated the expected geometry of growth strata or terraces [Simoes, et al., this issue; Daeron,

et al., this issue].

3. From detachment-tip folding to ramp overthrusting 

Deformation within the domain covered by the imaging system starts to become

significant only after about image 10, which corresponds to 2.3 mm of shortening, or 5% of the 

initial thickness of the sand layers (h/20).  Prior to this, deformation is entirely accommodated

closer to the backstop, outside the area covered by the camera. Following this initial phase of 

shortening, the evolution of deformation can be divided into two main stages that are the focus of 

our analysis. The first stage comprises distributed deformation and tip-line folding above the 
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foreland edge of the horizontal basal detachment. The second deformation stage occurs after a 

brief transitional phase of strain localization, and consists of upward propagation of the 

detachment tip and of formation of a mature frontal thrust ramp.  Hanging-wall material is 

subsequently transported along this new fault surface.

During the first stage of deformation, horizontal velocities decrease linearly with distance

away from the backstop, and vertical velocities show a nearly symmetrical, trapezoidal pattern of 

uplift (Figure 5A). We separate the uplift pattern into domains in which incremental uplift varies

linearly with horizontal distance, and interpret the boundaries of these domains as fold axial 

surfaces. The position of each of these surfaces was determined by the maximum change in slope

of the uplift rate versus distance curve as calculated in several different horizons (Figure 6). The 

analysis of the evolving velocity fields during this stage of deformation allowed us to study the 

four identified axial surfaces kinematic behaviour.

The two outer axial surfaces (labelled 1 and 4 in Figure 7) initiate and remain in their

same positions throughout the first stage of deformation. Axial surface 4 marks the frontal limit

of the deforming zone and appears to be fixed to both the footwall and hanging wall, essentially

acting as a foreland pin line. The discontinuity in the horizontal velocity field places this pin line 

30 mm further to the foreland than the discontinuity in the vertical displacement field, suggesting

there is a measurable, but small volume loss in the foreland adjacent to the growing fold. We

believe this volume loss is a specific feature of the analogue model, and most likely results from 

a reorganization of sand grain packing that would not occur in a natural setting. The most

hinterland axial surface, number 1, is also fixed to the footwall, but hanging-wall material

appears to migrate through it as shortening continues (Figure 7B). Axial surfaces 2 and 3 

immediately bound the fold crest, and are only recognized by discontinuities in the vertical 
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velocity field (Figure 7A). These surfaces move slightly and/or change orientation during 

continued shortening, suggesting they are loosely fixed to the hanging wall (Figure 7B). 

Throughout the first stage of deformation, the sand layers in the fold limbs rotate and experience 

some component of pure shear.

The end of the first deformation stage is marked by a short, transient stage of strain

localization that precedes ramp overthrusting. In this particular experiment at a cumulative

shortening of 4.2 mm, the deformation gradually focused along two discrete shear bands, each 

dipping approximately 25˚ toward the hinterland. Although the shear bands occur as prominent

features in the horizontal displacement field (Figure 4B and 5B), they accommodate less than 

30% of the total deformation. With continued shortening the more internal shear band, which 

approximately coincides with axial surface 3 defined in the vertical displacement field, tends to

become dominant and evolves into a well-developed thrust fault connecting the basal 

décollement to the surface (Figures 4C and 5C). Formation of this frontal thrust ramp induces a 

significant change of model deformation kinematics and marks, then, the end of the fault tip 

stage.

At the beginning of the second stage of deformation, when the cumulative shortening 

typically exceeds about 6 mm, or roughly 13% of the initial thickness of the sand layers (h/8), a 

prominent thrust ramp exists at the front of the sand wedge (Figures 4C, 4D, 5C and 5D). The 

footwall subsequently stops deforming and all the horizontal shortening is taken up by slip on 

this shear zone, which acquires a stable sigmoid geometry. The hanging wall is then thrusted 

over the ramp with some internal deformation to accommodate the flat-to-ramp geometry. Axial 

surface 1 remains fixed to the footwall whereas axial surface 2 is fixed to the hanging wall and is

passively transported along the fault.  Thereafter, the velocity field remains constant, because the
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fault geometry ceases to evolve. In general, the kinematics of the second stage of deformation is

very similar to those of a simple ramp anticline as predicted by fault-bend folding theory [Suppe

1983] (Figure 2A).

Figure 8 shows how the maximum uplift rate, Umax, varies during a complete experiment.

Before deformation gets localized, maximum uplift rate is observed to increase gradually and

may be as large as twice the value predicted by fault-bend folding theory:
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where r is the shortening rate and max is the maximum dip angle of the fault, here about 25˚.

This result is consistent with little internal deformation within the sand layers, and demonstrates

that care must be taken when inferring shortening rates from uplift rates during the detachment-

tip folding phase of deformation that is prior to the formation of the thrust ramp.

4. Analytical representations of surface uplift and horizontal velocity during fault-tip 

folding.

Vertical displacements are described from linear segments connecting the four axial 

surfaces (Figures 5 and 7). The axial surfaces are generally well defined from the profiles run at 

elevations above about 25 mm, but are generally more difficult to track closer to the décollement

where vertical displacements are smaller. The geometry of the first axial surface is not always 

well determined since it extends outside the image. Horizontal displacements vary linearly with

horizontal distance between two bounding axial surfaces (Figure 5).

During the first detachment-tip folding stage of deformation, we observe that horizontal 

velocity, V, decreases linearly with x, and tapers to zero at ~ 30 mm ahead of the axial surface 4

(Figure 4A and 5A). Incremental horizontal displacements can be described by 
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xzzrV )(1)(           (4) 1

2 where r(z) is the horizontal incremental shortening at the back of the structure and

)(1)( zWz h , and Wh(z) is the distance between axial surfaces 1 and 4. 3

4

5

Because the maximum uplift rate scales linearly with the initial datum elevation, z (Figure 9), we 

may write: 

6

7

8

9

10

zUmax                          (5) 

In the ideal case of a zero thickness décollement, the parameter  should be equal to zero 

because no uplift would be observed at the level of the décollement. This parameter μ is not zero 

in our experiment because the décollement is a shear zone of finite thickness. 

In addition, as shown in Figure 9, the uplift profile at each depth obeys 

X

UU max 6)11

12

13

where U is the difference in uplift at two points separated by a horizontal distance X. Since 

Umax depends linearly on z, we get 

,z
X

U )14

15

16

which implies that the pattern of incremental uplift in each dip domain between the axial

surfaces can be written as 

),(zxzxU              (8) 17

18

19

20

where the parameters  depend on the considered dip domain. This simple

parameterization yields a good fit to the data (Figure 10).  For easier use, equation (8) can be 

rewritten for each domain, i,
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)(),(),( iii xxzzxUzxU ,                   (9) 

where i is a constant parameter for each dip domain i considered; the term U(xi,z) corresponds 

to the vertical increment within the dip domain (i-1) at the horizontal position xi of the axial 

surface shared by consecutive dip domains i and (i-1), and allows for continuity of vertical 

displacements from one dip domain to the next one. Since the surface area of the deforming

domain is approximately constant, U(x,z) depends uniquely on the parameters in equation (9) and

on the position of the two axial surfaces defined from the horizontal displacements. The 

predicted horizontal velocity obtained from that assumption is in quite good agreement with the 

measurements (Figure 10A). During the transition from the initial stage of distributed 

deformation to ramp anticline formation, horizontal displacements need a more complex

formulation. A reasonable fit to the data is however still obtained by assuming again mass

conservation and linear functions between axial surfaces (Figure 10B).

5.  Comparison with other models of fault-related folding

5.1 Comparison with an elastic dislocation model

We discuss first the possibility of modeling the observed kinematics from dislocations 

embedded in an elastic half-space [Okada, 1985]. Although the deformation observed in the 

experiment is not recoverable, hence non-elastic, it might be argued that this kind of model

might provide a reasonable approximation to the velocity field [e.g., Ward and Valensise, 1994]. 

Following Ward and Valensise [1994] we have imposed a coefficient of Poisson of 0.5 to insure 

conservation of volume. We found it impossible to correctly predict simultaneously the vertical 

and horizontal velocities from this approach (Figures 11 and 12). We reached the same

conclusion while analyzing the stage of fault-tip folding and the stage of ramp overthrusting. In 

14



1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

both cases, we find that slip rates derived from modeling the uplift pattern using elastic 

dislocations would be overestimated. It is generally possible to obtain a reasonable fit to the the

profile of uplift rate at the surface, or in a naturale case to deformed seismic reflectors from this

approach, , but inferences of fault geometry at depth and any displacement rates might be biased

and should be considered with caution.

5.2 Comparison with  trishear folding

The kinematics observed in our experiments show similarities with the trishear fault-

propagation model  [Erslev, 1991]. In the trishear model, a single fault expands outward into a 

triangular zone of distributed shear. An unlimited number of velocity fields and shapes of the 

triangular zone can be generated by varying the propagation-to-slip ratio (P/S), which determines

how rapidly the tip line propagates relatively to the slip on the fault itself [Allmendinger, 1998;

Allmendinger and Shaw, 2000; Zehnder and Allmendinger, 2000].

In the first phase results from distributed shear in a domain delimited by the two 

bounding hinges. Shear is not homogeneous and the deforming domain is not exactly triangular. 

As formulated in previous studies the trishear models requires in addition that the fault dip angle

lies between the dip angles of the two boundaries of the triangular zone of distributed shear. As a 

result, it is not possible to model distributed shear above the tip of a décollement. Hence the 

model doesn’t apply directly to the first phase. The trishear model might be adapted to that case

but here we rather opted for the formulation described above (equation (4) and (9)) which 

ignores the propagation of the décollement.
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Deformation during the stage of propagation of the frontal ramp propagation is close to a 

trishear fold mechanism although there is no clear indication in our experiment of propagation of 

the tip of the ramp during this transient stage of strain localization (Figure 2 B4). 

5.3 Comparison with the fault-bend fold model

Once the frontal ramp has propagated up to the surface (when cumulative regional

shortening exceeds h/8) the system evolves toward a ramp anticline. In this case, the uplift rate

pattern is fully determined by the shortening rate, r, and the fault geometry, which controls the 

position of the axial surfaces. A possible kinematic model would be that the hanging wall 

deforms by bedding plane slip according to the fault-bend folding model [Suppe, 1983], which 

assumes the conservation of the length and thickness of the sand layers. Here, we test whether 

this model can be used to model the kinematics of folding in the stage of ramp-anticline folding. 

In such a case, equation (1) would hold as soon as the sand layers become parallel to the fault, as 

pictured in Figure 13, and hence when the cumulative slip on the ramp exceeds U/sin( ) (where 

 is the average dip angle of the fault). In the hanging wall, uplift rate depends on the dip of the

fault at depth, which is equal to the local bedding dip angle. If the fault dip angle is  at the x’

coordinate, at depth z the x coordinate where the bedding dip angle is  is )tan(' zxx

(Figure 13).  The relation between the horizontal displacement V(x) and the vertical displacement

U(x) is then simply,

18

19

20

)'(tan)()( xxUxV       (10)21

22

23

24

where the fault dip angle (x') at point x’ as defined above. To test the model, the fault shown on 

Figure 7C was determined from the measured strain field and adjusted from a fourth order 

polynomial. The measurements rather suggest a shear zone with a finite thickness of the order of 

16



3 mm. In order to improve the fit of the model and avoid having large misfits near the fault zone

(which could artificially increase the RMS between the data and the predicted displacements),

the predicted displacements were smoothed with a gaussian function with a variance of 3 mm. 

We observe that this formulation provides a relatively good fit to the uplift rates, but the 

cumulative slip is less than the critical value, U/sin(  (RMS of 10.9 10

1

2

3

4

5

6

7

8

9

10

11
12
13
14

15

16

17

18

19

20

21

-3 mm/step between steps

150 and 153). If this model were used to estimate shortening rate from the measured uplift rate in 

the experiment, it would underestimate the actual value by 8-10 %. This shows that the ramp 

overthrusting stage of our experiment does not exactly obey the fault-bend fold model, which 

can be explained by the fact that beds near the surface are not yet parallel to the thrust fault at 

depth.

5.4 Comparison with a simple shear folding model

Another way to relate horizontal and vertical velocities along the profile after 

deformation gets localized is to assume that the hanging wall deforms by simple shear as 

pictured in Figure 14. This model obeys mass conservation only if the slip on the fault plane 

varies with the fault dip angle. Given that there is no length line change for lines parallel and 

perpendicular to the direction of simple shear, the projection of the velocity vector at any point in 

the direction perpendicular to the simple shear direction must be constant and equal to r.sin( ),

where r is the shortening at the back of the structure, and  the simple shear angle defined in 

Figure 14. The slip r’ on the fault is then expressed by : 

))(sin(
sin)('

x

r
xr                 (11) 22

23 where (x) is the local fault dip angle at point x.
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The surface uplift at abscissa point x is then related to the uplift on the fault at a point x’

with  (Figure 14). The local uplift at the x coordinate can therefore be 

written as 

1

2

3

tan*)'(' xzxx

4

5

6

)'(sin)'(')( xxrxU ,        (12) 

with (x’) the fault dip angle at point x’, and r’(x’) the slip on the fault at the same point.  Using 

(11) and (12), we can deduce the shortening r from the uplift profile, 

)'(sinsin
)'(sin()()(

x

xxU
xr .        (13)7

8

9

Assuming simple shear deformation, the horizontal displacement V(x) along the section is 

then related to the vertical displacement U(x) and the fault dip angle at point x’ according to 

))'(tan(
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x
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where (x’) is the fault dip angle at point x’ as defined above. 

This model predicts a sharp discontinuity of displacements across the fault which can 

lead to large local misfits when modeled and observed displacements are compared.  To 

attenuated this effect, the displacements predicted from the model are smoothed with a gaussian

function with a variance of 3 mm.

We have next varied the simple shear angle, , in order to maximize the fit to the 

observed displacements. It turns out that the best fit is found for an angle of about 105° (Figure 

15).  This modeling provides an excellent fit to the data (RMS of 8.62 10-3 mm/step for the

vertical velocities and rms of 16.95 10-3mm/step for the horizontal velocities between steps 150

and 153) reconciling both vertical and horizontal velocities (Figure 16), except at the back of the 

structure, where the fault is almost horizontal. Because the best fitting shear angle does not

exactly bisect the detachment and the ramp dip angle, this direction of shear implies changes of 
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the thickness and length of the sand layers during folding [Suppe, 1983]. Hanging-wall units 

consequently thicken during their transport above the ramp, as also observed in other 

experiments [Maillot and Koyi, 2006; Koyi and Maillot, 2006]. 
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6. Discussion on the folding mechanism observed in the analogue experiment 

In this experiment folding results primarily from distributed plastic shear.  After a critical 

value of shortening (h/8), strain starts to localize and a frontal ramp develops. The ramp forms by 

strain localization close to a passive axial surface (the third one described above)  where strain 

was able to accumulate during the first stage of folding (Figure 17). Because of this location the 

tilted forelimb formed earlier becomes part of the footwall once the ramp is formed. Memory of

the initial phase of fault propagation is thus preserved in the footwall and in the hangingwall 

from the tilted forelimb. Note that in the presence of erosion, once the system has become a ramp

anticline, the memory of the initial phase of deformation in the hanging wall would be lost but 

preserved in the footwall (Figure 17). Such a geometry has been observed across several 

piedmont folds north of the Tien Shan which were inferred to have evolved from fault-tip folds 

to fault-bend folds [Avouac, et al., 1993].

Qualitatively, the behavior observed in this experiment is probably not specific to the

particular setting of the experiment selected for this study. From a mechanical point of view, the

axial surfaces are the expression of developing conjugate shear bands bounding a symmetrical 

pop-up structure (Figure 5B). After the localisation of the favoured fore-thrust shear zone (Figure 

5C) back-thrust shear zone is moving as part of the hangingwall on the ramp. The detail of the 

kinematics, however, must depend highly on the particular geometrical set-up and material

properties in the selected experiment. For example, it is probable that the amount of distributed 
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deformation reached before localization is related to the onset of strain hardening and probably 

depends on factors such as the grain size and compaction [Lohrmann, et al., 2003]. A complete

mechanical analysis of the observed kinematics is beyond the scope of this study and would 

require a parametric study to elucidate the influence of each of the governing material properties 

and of the geometry (dependence on layer thickness, dependence on layering, etc.).

During ramp overthrusting, we find a good fit between observed incremental

displacements and the simple-shear model assuming an optimal simple-shear angle of 105º (  in 

Figure 14). Most of the shear occurs in the area where the detachment connects with the ramp.

This zone thus appears as a migrating kink band, equivalent to a transient backthrust dipping by 

65 º. Maillot and Leroy [2003] have determined the optimal dip of the backthrust in such a fault-

bend fold that would correspond to a minimum of dissipated energy within the whole structure. 

The three sources of dissipation are due to frictional sliding on the ramp, on the backthrust and 

on the décollement [Maillot and Leroy, 2003]. As mentioned above, the basal coefficient of 

friction is estimated to 21° in this experiment. According to Maillot and Leroy  [2003], the

optimal dip of the back thrust would be 30° in this case, which implies a simple shear angle of

150° quite different from that observed in the experiment. The system does not seem to respond 

as expected from the minimization of total dissipation. The observed kinematics does not 

conform either to the kinematics expected from conventional fault-bend folding [Suppe, 1983]. 

This is because, despite the presence of the glass beads layers, layer-parallel longitudinal strain 

dominates over layer-parallel shear in this experiment.
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7.  Guidelines for the analysis of natural fault-tip folds.1
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We outline here how the fault-tip fold kinematic model described above can be used to

analyze natural folds. It is first assumed here that cross sectional area is preserved during folding. 

It should be recalled that a variety of mechanisms can lead to volume changes in analogue 

models, as observed in our experiment, or at the scale of natural folds such as tectonic

compaction, dilatancy, or pressure solution, [Koyi, 1995; Marone, 1998; Whitaker and 

Bartholomew, 1999; Lohrmann, et al., 2003; Koyi and Cotton, 2004; Adam, 2005].  The

approach  assumes in addition that the deformation field is stationary, meaning that all the axial 

surfaces remain fixed relative to the undeformed footwall. This is only a first order

approximation (Figure 7).  Provided that these assumptions are correct, the analytic model makes

it possible to retrieve the history of shortening across a fold from growth strata or from deformed

fluvial terraces [Simoes, et al., this issue; Daeron, et al., this issue]. First, the analytical

expressions need to be calibrated based on the finite geometry of the fold, (as images by seismic

profiles for example). As an illustrationand to test the hypothesis that deformation can be 

assumed stationnary, we use the finite geometry after 3.4 mm of horizontal shortening, when 

localization of the fault has initiated at depth (Figure 18).

7.1 Relating dip-angle and shortening for fault-tip folds. 

The key observation in the experiment is that uplift rate varies linearly within domains

separated by axial surfaces (equation (9)), whereas incremental horizontal displacement varies

linearly with a constant gradient over the whole fold area (equation (4)). The change in dip angle

associated with an incremental shortening r, within a certain domain i is then given by
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where   is the dip acquired after an incremental shortening r, in the case of a growth or a pre-

growth stratum. This relation can thus be used to infer the cumulative shortening recorded by

tilted structural horizons or geomorphic surfaces, and if a set of pre-growth and growth strata are

available, the history of folding can be retrieved.

To calibrate the fold model parameters, the finite structure of the fold is used. Within

each domain i, the coefficients in equation (15) might be determined from the observed structural 

dip angles of pre-growth strata (equivalent to  in equation (15)) provided that the cumulative

shortening (equivalent to r) and depth to the décollement (z) are known. In practice, these latter 

two can be estimated from the excess area method [Chamberlin, 1910; Epard and Groshong,

1993]. Conservation of mass implies that the area A below a deformed level at an initial altitude z

above the décollement equals the product z·R, where R is the average total shortening of the

layers below the considered horizon (Figure 1). By plotting A vs. z, one should obtain a linear 

relationship constraining both the cumulative shortening R and the depth to the décollement z

(Figure 19). In the case of our analogue experiment, the retrieved plot is approximately linear but 

does not meet the condition that the excess area should be zero at the decollement (Figure 19). If

the depth of the decollement was not known independently we would underestimate the 

décollement depth, and overestimate shortening by 55% (5.3 mm instead of 3.4 mm). This is a 

problem that has also been noticed in natural examples [Scharer, et al., 2004, Simoes, et al., this 

issue], and décollement parallel shear back of the fold, sometimes termed ‘backshear’, was

advocated as a possible explanation. If backshear is assumed constant with depth, the function 

describing how the excess area varies with depth is parabolic (Figure 19A). In our case, a 

parabolic curve doesn’t improve much the fit to the data and neither yield the right estimate of R.
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In fact, this explanation doesn’t since the horizontal velocity field show no evidence for 

backshear.  The discrepancy rather relates to the fact that the cross-sectional area is not

conserved during the phase of fault-tip folding. If we now impose the décollement depth by 

forcing the linear regression through the origin of the axis (A=0 at z=0), the excess-area approach

yields a total shortening of 3.6 mm close to the known experimental value. It therefore turns out 

that an independent constraint on the décollement depth is preferable when applying the excess

area method to fault-tip folds and that, without such information, the estimated shortening and 

décollement depth could be biased.

7.2 Determination of and i describing incremental displacements. 

Once axial surfaces are defined, (z) may be easily determined from the width of the 

fold, Wh(z), measured at several elevations above the décollement, z. Given the estimated depth

to the décollement, the value of i in each dip domain i can then be calculated from equation (15) 

(Figure 20).

With these parameters, the synthetic fold geometry is reasonably well adjusted by the 

model (figure 21). Mismatches most likely result from the fact that we did not allow for 

migration of fold axial surfaces over time, and that at the stage of fold development chosen for 

this test, strain localization has already begun. Also, the model parameters have been calibrated 

from the finite structure, assuming a stationary deformatiom field.

7.3 Testing the model against incremental deformation 

The model calibrated from the analysis of the finite structure can be used to predict 

vertical and horizontal incremental displacements. It turns out that they compare relatively well 
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with the incremental displacements measured from the analogue experiment itself, except for the 

most frontal zone where shear bands and compaction are observed at this advanced stage of

fault-tip-folding (Figure 21). Excluding this domain, the observed discrepancy is within 10% of 

the incremental shortening imposed at the back of the fold, and it appears that the model usually

tends to slightly underestimate the actual incremental deformation. The model derived from the 

finite structure seems thus adequate to describe the incremental growth of the fold, even at this

advanced stage of fault-tip folding. This validates the idea that incremental uplift or limb tilt that

is recorded from terraces or growth strata can be analyzed from such simple analytical 

formulations to derive corresponding horizontal incremental shortening.

8. Conclusion 

The experiment analyzed in this paper mimics the development of a fold growing over a 

propagating basal décollement which evolves towards a ramp-anticline. In the early stage, 

deformation is distributed leading to thickening and shortening of the sand layers. This 

mechanism results in gradual tilting of the forelimb and backlimb. Up to about h/8 of shortening, 

deformation of the medium is distributed and the fold grows as a result of thickening and 

shortening of the sand layers leading to limb rotation. Our measurements suggest that the fold 

kinematics can be described from a simple analytical formulation, which assumes that the 

velocity field is a linear function of depth and horizontal distance. Most importantly, the gradient

of horizontal displacements is constant across the whole fold zone as long as strain does not

localize. Once deformation is localized, a stable frontal ramp is formed and the system behaves

as a ramp anticline. During this stage of deformation the measured displacements can be 
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reproduced reasonably well assuming bed-parallel simple shear, as in the fault-bend fold model, 

or simple-shear parallel to a constant direction. We have observed the same qualitative behavior

in other experiments similar to the one analyzed in detail in this study so that we can confidently 

state that the process described here is general, but we are unable at this point to assess how the 

observed kinematics relate to the mechanical properties of the sand and glass beads layers, or to 

the geometry of the experimental setup.

Based on the kinematic model derived from this experiment, we propose some procedure 

to retrieve the fold kinematics from growth strata geometry or deformed geomorphic markers.

This approach has been applied successfully to the analysis of the Pakuashan anticline, west 

central Taiwan [Simoes, et al., this issue] and to detachment folds along the piedmonts the Tien 

Shan [Daeron, et al., this issue]. 
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Table 1 : List and definition of the variables introduced in the analysis.

Figure captions 
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Figure 1: A. Structure of a mature fault-tip fold. B. Continuous profile of a deformed terrace 

across the fold can be used to measure incremental folding. The area A defined by the deformed

terrace above its initial geometry may be related to the total displaced area at the back of the fold

since the terrace was abandoned (A) C. Sine of bedding dip angle along structural section, as for 

use in equation (1). It might be appropriate to perform such analysis to retrieve incremental

deformation within the backlimb of the fault-tip fold represented, since it appears to be more

mature in this portion of the fold, but may lead to large errors at the front where the structure is

not mature enough and appears more complex.
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Figure 2: Classification of fold models with emphasis on the kinematic record provided by the 

architecture of growth strata [Burbank and Anderson, 2001]. A- fault-bend folding [Suppe, 1983;

Medwedeff and Suppe, 1997] results from the transfer of slip from a deeper to a shallower 

stratigraphic detachment level. The model assumes conservation of bed thickness and length 

during deformation. The hanging wall deforms by bed-parallel simple shear and axial surface 

migration. This model applies to mature faults, with a cumulative slip larger than the distance 

from the décollement to the surface (measured along the fault). B Various possible geometries of

folds formed at the tip of a blind thrust fault. The fault-propagation fold model (B1) assumes

conservation of bed length and thickness [Suppe and Medwedeff, 1990; Mosar and Suppe, 1992]. 

The slip gradient model (B2) does not require fault propagation. It assumes conservation of area

but not of bed length [Wickham, 1995]. Model B3 assumes a changing bed length and forelimb 

angle [Dahlstrom, 1990; Epard and Groshong, 1995; Mitra, 2003]. Model B4 assumes a

triangular shaped zone of distributed shear [Erslev, 1991; Allmendinger, 1998].  The choice of 

the appropriate model to use in the analysis of a natural case example is not straightforward.
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Figure 3:  (A) Experimental set-up. To build the model, granular materials were sprinkled into a 

20 cm wide and 100 cm long box equipped with transparent side walls, similar to the 

experimental set-up used by Dominguez et al. [2000]. The sand layers slide on a horizontal ( =0)

basal polyvinyl chloride (PVC) plate, 2 cm thick. Initially undeformed sand mass is compressed

and deformed by a backstop moved by a step motor. A CCD camera takes pictures (6.3 Mpixels 

with a spatial resolution of 0.04 m2) with a constant time step corresponding to 0.2 mm 

(equivalent to 2.7 pixel) of shortening between two successive images. (B) Initial conditions. 

Five low frictions glass bead layers are interlayered with the sand layers. (C) Summary of the 

optical flow technique for measuring displacements. The numerical video image at step 122 is

compared to the one at step 120. The displacement field is computed from the optical flow 

technique as described in the text. The incremental displacement field is represented by vectors 

or a deformed grid. Also shown is the second invariant of the strain tensor (I2 = 1/2[tr( )2-tr( 2)]

where is the deformation tensor),  in gray scale to emphasize zones of strain localization 

Figure 4: Incremental displacement field and strain measured during the stage of detachment-tip

folding (between steps 05 and 08, cumulative shortening = 1 mm), the transitional stage of strain 

localization (between steps 20 and 23, cumulative shortening = 4.2 mm), and the stage of ramp

overthrusting (between steps 80 and 83, cumulative shortening = 17 mm and between steps 200 

and 203, cumulative shortening = 42.6 mm). For each of these plots the cumulative horizontal

shortening is indicated. Note that in the early stage, deformation is not localized. After a

cumulative shortening of about 6 mm it localizes on a frontal ramp connecting the basal

décollement with the surface.
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Figure 5: Horizontal and vertical displacement rates measured along profiles run at different

depths during (A) the detachment-tip folding stage (between steps 10 and 12, cumulative

shortening = 2.1 mm), (B) the transitional stage of strain localization (between steps 20 and 23, 

cumulative shortening = 4.2 mm) and (C and D) the stage of ramp overthrusting between steps 

50 and 53 (cumulative shortening = 10.6 mm) and between steps 150 and 153 (cumulative

shortening = 32 mm). The abscissa axis is positioned at the depth at which each profile is run. 

Figure 6: Uplift rates during the detachment-tip folding stage (between steps 10 and 12), 

measured along profiles at different depths. For each profile, the position of the ordinate axis

indicates the depth at which the profile is examined. The position of the various axial surfaces

determined from the break-in-slope (circles) is indicated, as well as the locus of the maximum

uplift rate on each profile (dark line). The first, second and third axial surfaces are reasonably

well fit by a straight line suggesting a linear dependency with depth. A straight line also fits 

reasonably well the abscissa corresponding to the maximum uplift rates on each profile. The 

most frontal axial surface can be adjusted with a second order polynomial.

Figure 7: (A) Schematic pattern of uplift rates and horizontal velocities at various depths. As 

deformation increases, the positions of the axial surfaces evolve, in particular axial surfaces 3

and 4 nearly coalesce to define a localized shear zone corresponding to the frontal ramp. (B) 

Location of the three frontal axial surfaces during the experiment. (C) Geometry of the frontal 
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fault which forms after about 6 mm of shortening together with the positions of the axial surfaces 

determined from the vertical displacements.

Figure 8: Maximum uplift rate (at z = 50 mm) as a function of cumulative shortening. In the 

early stage of the experiment, during the stage of detachment-tip folding and the transitional

stage of strain localization, before deformation gets strongly localized, the maximum uplift rate 

increases gradually. Once deformation is localized on a frontal ramp the maximum uplift rate is 

independent of the cumulative shortening and is simply maxmax rU sin*  where r is the 

shortening rate and 
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max is the maximum dip angle of the fault, about 25°. 

Figure 9: (A) Maximum uplift rates as a function of elevation above the décollement during the 

stage of detachment-tip folding (values from steps 10-12). A linear function (dashed line), as 

proposed in equation (5), provides a good fit (B) Normalized uplift rates at several depths. Uplift 

rates are normalized by the value of the maximum at each depth (values from steps 10-12).

Figure 10: Comparison of the measured displacements (blue dots) before fault localization

during the detachment-tip folding stage (between steps 10 and 12) (A), and transitional stage of 

strain localization (between steps 20 and 23) (B) (ie for a cumulative shortening lower than 6 

mm), and those predicted from the linear model detailed in text (red or green continuous lines). 

The rms of the fit to the uplift rate is 0.012103 mm/step between steps 10 and 12 (computed for

the profile at an elevation of 50 mm above the décollement). The fit to the horizontal velocities 

yields a rms of 0.021771 mm/step between steps 10 and 12. 
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Figure 11: Results from dislocation modeling of observed vertical and horizontal velocities 

during the stage of detachment-tip folding, phase of fault-tip folding (between steps 10 and 12), 

using the theory of a dislocation in a elastic half space [Okada, 1985]. (Top left) Measured (blue) 

and modeled (black) vertical displacement at the surface. (Top right) Horizontal displacements

extracted from the data (red) and calculated (lack). (Bottom left) Shape of the fault used to 

calculate displacement. (Bottom right) Value of the root mean square difference between

observed and calculated vertical displacement as a function of slip rate on the décollement.
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Figure 12: Results from dislocation modeling of observed vertical and horizontal velocities 

during the stage of ramp overthrusting (between steps 150 and 153). (Top left) Vertical 

displacement at the surface extracted from the data (blue) and calculated (black). (Top right) 

Horizontal displacements extracted from the data (red) and calculated (black). (Bottom left)

Shape of the fault used to calculate displacement. (Bottom right) Value of the square difference 

between observed and calculated vertical displacement vs the fault slip. 

Figure 13: Diagram showing how the incremental uplift, u, of an initially horizontal horizon

relates to incremental shortening in the case of a mature fault-bend fold. The model assumes

conservation of bed thickness and bed length and the hanging wall deforms only by bed-parallel 

shear.  Uplift is proportional to the sine of the fault dip angle, equivalent to the local bedding dip 

angle, , and to the slip along the fault (equation (1)). The assumption of a constant bed 

thickness and length during deformation requires that at point with abscissa x at the surface the

bedding dip angle equals the fault dip angle at the point with abscissa x’ along the fault.
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Figure 14: Sketch showing the relation between incremental shortening r and uplift of an 

initially horizontal horizon in the case of a ramp anticline with simple shear deformation of the 

hanging wall (simple shear angle ). Conservation of area implies that slip has to vary along the

fault.
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Figure 15: Plot showing how a model of ramp overthrusting with simple shear deformation of 

the hanging wall fits the observed uplift rates when the simple shear angle is varied (see sketch

Figure 14). The best fitting shear angle is 104°. This result holds for all incremental

displacements during this kinematic stage. 

Figure 16: Comparison between observed horizontal and vertical velocities (blue dots) and the 

theoretical profiles (red or green continuous lines) predicted from ramp overthrusting with

simple shear deformation of the hanging wall for a shear angle of 105º as sketched in Figure 15. 

See text for details. 

Figure 17: Finite deformation of layers initially horizontal computed from the proposed 

analytical approximation to the measured displacement fields.  Horizontal and vertical 

displacements are exaggerated by a factor of 8 for readability. At each stage the cross-section is

obtained by applying incremental deformation to the previous stage. Erosion is not simulated,

but displacements above the deformed surface after the first incremental shortening (0.2 mm)

have not been modeled. The first 2 mm of shortening are not taken into account in this modeling.

This choice implies a fault initiation after only 4 mm of shortening instead of 6 mm as discussed 
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in the text. The phase of fault-tip folding, up to 2.125 mm of shortening, assumes a stationary 

velocity field equivalent to that defined from steps 10 to 12 in the experiment. This corresponds 

to the phase of fault-tip folding. The fold structure for a shortening of 2.75 and 3.4 mm,

corresponding to the transitional stage of strain localization, was obtained from the velocity 

fields derived from steps 20 to 23 at the onset of strain localization within the sand layers. Above 

4 mm of shortening we assume ramp overthrusting with simple shear deformation of the hanging 

wall as observed in the experiment from steps 50 to 53 (stage of ramp overthrusting).

Figure 18: Structure of the modeled fold after an actual shortening of 3.4 mm corresponding to 

Figure 17. The geometry of the fold is not exaggerated here. The backlimb has been extrapolated 

slightly outside the zone covered by our measurements. Each colored surface corresponds to the 

fold core area (or ‘excess area’) above the initial elevation of the considered strata. Inclined lines

indicate axial surfaces delimiting domains of homogeneous finite dips as determined from this

finite structure.

Figure 19: Excess-area as a function of elevation above the décollement.(A) In the absence of 

any backshear excess area, A, varies linearly with elevation above the décollement following 

Chamberlin’s law [Chamberlin, 1910]. In case of backshear the relationship is no more linear. 

(B) Variations of excess area, as derived from Figure 18, as a function of elevation. A simple

linear regression through the data yields a finite shortening of 5.3 mm too high, and a 

décollement level too shallow. If the regression is forced through the origin to account for the 

known décollement, the estimated total shortening is close to the real value of 3.4 mm.
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Figure 20: Parameters of the analytical formulations derived from the finite structure of the

synthetic fold.(a)  as a function of depth. (b) i for each one of the three domains

Figure 21: Computing the misfits between the observed the modeled fold kinematics. Residuals

correspond to predicted minus observed dips or displacements. A- Distribution of the computed

residuals in the dip angles between predicted and observed finite structures.  Standard deviation 

and median are also reported. The highest residuals are observed in the vicinity of the axial 

surface lines. B- Residuals between predicted and observed horizontal incremental displacements

for a total incremental displacement of 1mm at the back of the system. Most of the misfits occur

around the shear bands that develop essentially at the front of the fold during steps corresponding 

to a cumulative shortening of 2.75 mm and 3.4 mm of Figure 18. Except for this area where 

deformation is underestimated by the model, the predicted horizontal displacements are in good

agreement with the observed ones, within 10% of the applied displacement at the back of the 

system C- Residuals between predicted and observed vertical incremental displacements for a

total incremental displacement of 1mm at the back of the system. Most of the underestimation of 

vertical incremental deformation results also from the influence of the shear bands at the front of 

the fold. As previously, the model is able to predict correctly the incremental displacements

within 10% of the shortening applied at the back of the system.

38














































