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Abstract 

 

The Chelungpu fault produced the September 1999 Mw=7.6 ChiChi earthquake, central Taiwan. The 

shortening rate accommodated by this structure, integrated over several seismic cycles, as well as its 

contribution to crustal shortening across the Taiwanese range has remained unresolved. To address this issue, 

we focus our study on the Chelungpu and Chushiang thrust faults within the southernmost portion of the 

ChiChi rupture area. Structural measurements and available seismic profiles are used to infer subsurface 

geometry of structures. The Chushiang and Chelungpu faults appear as two splay faults branching onto a 

common ramp that further north connects only to the Chelungpu surface trace. We survey a deformed strath 

terrace along the Dungpuna river, buried under a 11,540 +/- 309 cal yr old fill deposit. Given this age, the dip 

angles of the faults and the vertical throw determined from the offset of the strath across the surface fault 

traces, we estimate slip rates of 12.9 +/- 4.8 mm/yr and 2.9 +/- 1.6 mm/yr on the Chelungpu and Chushiang 

faults respectively. These yield a total shortening rate of 15.8 +/- 5.1 mm/yr to be absorbed on the common 
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decollement at depth within our study area. This total value is an upper bound on the slip rate on the 

Chelungpu fault further north, where the Chushiang fault disappears and transfers shortening to adjacent 

faults. Combining these results with the recently constrained shortening rates on the most frontal Changhua 

blind thrust reveals that all these frontal faults presently absorb most of the long-term horizontal shortening 

across the Taiwanese range. They thus stand as the major sources of seismic hazard in this heavily populated 

area. The return period of earthquakes similar to the ChiChi event over a ~80 km long stretch of the Western 

Foothills is estimated to be ~64 yr. This value is an underestimate because it assumes that all the faults locked 

during the interseismic period slip only during such large events. Comparison with historical seismicity 

suggests that episodic aseismic deformation might also play a major role in accommodating shortening.  

 

1. Introduction 

 

Taiwan is located at the boundary between the Philippine Sea Plate and the Chinese continental margin, which 

converge at a rate of ~90 mm/yr in a NW-SE direction [Sella et al., 2002] (figure 1). A fraction of this 

convergence is absorbed by shortening across the Taiwanese range, which comprises the Central Range (CR) 

and the Western Foothills (WF). Several active faults, such as the Changhua blind thrust, the Chelungpu fault 

that broke during the 1999 ChiChi earthquake [Ma et al., 1999], the Chushiang and the Shuangtung faults 

have been recognized in the western frontal area [Bonilla, 1975, 1999; Chen et al., 2004a; Shyu et al., 2005; 

Sung et al., 2000; Tsai, 1985] (figures 2 and 3) and may all play an active role in accommodating this 

shortening. Interseismic strain measured from GPS data before the ChiChi earthquake [Yu et al., 1997] shows 

that all these faults are locked, and that they probably root at depth beneath the range into a decollement that 

creeps at 27 to 45 mm/yr [Dominguez et al., 2003; Hsu et al., 2003; Loevenbruck et al., 2001] (figure 4). 

These rates, derived for a very short time scale of ~5 years, compare well with the 39.5-44.5 mm/yr 

shortening rate across the range recently proposed over the last 1.9 Myr based on the analysis of the foreland 

basin [Simoes and Avouac, in press]. How this shortening is distributed to the active faults is still not clearly 
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known, although balanced cross-sections indicate that most of this shortening has been in fact taken up within 

the WF [Simoes and Avouac, in press]. This information is key to assess seismic hazards in this highly 

populated area. Recently, based on the kinematic analysis of the Pakuashan fault-tip fold at the deformation 

front of the range (figures 2 and 3), Simoes et al. [subm.] proposed that deformation associated with the 

Changhua blind thrust has accommodated 15.9 +/- 1.4 mm/yr of shortening since initiation of fold growth, 

~65 kyr ago. However, the contribution of the remaining active structures to the long-term crustal shortening 

across the WF and the Taiwanese range, integrating several seismic cycles, is not yet resolved [e.g. Cattin et 

al., 2004].  

The Chelungpu thrust is one of the major faults present within the WF of central Taiwan (figures 2 and 3). 

Despite several investigations that have taken place since the ChiChi earthquake, the slip rate on this thrust is 

still not well constrained. Balanced cross-sections [Yue et al., 2005] and estimates of the amount of erosion of 

the thrust sheet [Simoes and Avouac, in press] indicate a total finite shortening of ~18.5-24.1 km. Studies of 

deposits incorporated into the thrust sheet suggest that fault inception is younger than 0.9 Ma [Chen et al., 

2001] and most probably as young as 0.7 Ma [Chen et al., 2000]. This implies an average long-term 

shortening rate of ~26.4-34.4 mm/yr since the fault initiated. How this estimate relates to the present slip rate 

on the fault, over times scales of ~10 kyr to ~100 kyr integrating several seismic cycles, is poorly known. 

Paleoseismic investigations across the Chelungpu fault suggest much lower slip rates of  4.97 to 8.5 mm/yr 

over the last ~1.9 kyr [Chen et al., 2004b; Wang, 2005]. This rate may not be representative of the actual 

average slip rate because the time covered by these data may be too short in view of the probable return 

period of large earthquakes on this fault, estimated to ~630 to 1,900 yrs from paleoseismology [Wang, 2005].  

Also, this return period may not be regular. Morphotectonic investigations may therefore prove more 

appropriate to assess slip rates integrating several seismic cycles of the fault [e.g. Lave and Avouac, 2000].  

Although Chen et al. [2003] recognized and dated several fluvial deposits deformed by the Chelungpu thrust, 

such investigations have not yet been carefully performed on this structure. 
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For this purpose, we conducted field investigations along a tributary to the Choushui Hsi, the Dungpuna river, 

(figures 2 and 5), where a strath terrace buried under a fill deposit provides a key geomorphic marker 

deformed by the Chelungpu and Chushiang thrust faults. Hereafter we first review the subsurface geometry of 

these faults, which can be constrained from field measurements and available seismic profiles in the nearby 

Choushui valley [Wang et al., 2002] (figures 2 and 5).  Based on the deformed geometry of the surveyed 

strath terrace as well as on the age of this geomorphic marker, we derive slip rates on the Chelungpu and 

Chushiang faults over a period of ~11 kyr. Our results indicate that the Chelungpu thrust plays a major role in 

accommodating shortening across the CR of Taiwan. Finally, we discuss our findings and their implications in 

terms of the seismic cycle of this active structure, as well as in terms of seismic hazards within the WF. 

 

2. Structure of the Chelungpu and Chushiang thrust faults along the Dungpuna 

river. 

 

The Chelungpu and Chushiang thrust sheets consist of sediments that were initially deposited within the 

foreland basin (figure 2). The Pliocene Chinshui Formation, characterized by thin shales and siltstones, is the 

most probable candidate for the decollement level of the Chelungpu fault [e.g. Yue et al., 2005], as well as of 

the Chushiang thrust (figure 3). It is overlain by the Upper Pliocene Cholan Formation, composed of light 

gray to brownish shales intercalated with fine to coarse sandy layers. These shallow-marine sediments have 

been covered by the Pleistocene conglomeratic Toukoshan Formation mostly present west and north of our 

study area (figure 2), and later by Quaternary fluvial deposits. 

In map view (figure 2), although most of the main structures of west-central Taiwan trend north-south and are 

consequently oblique to the main ~N20E structural trend of the island (figure 1), the Chushiang fault [Chen et 

al., 2004a] strikes ~N30E (figures 2 and 5), perpendicular to the direction of convergence and tectonic 

transport [Yu et al., 1997; Yu et al., 2003; Yu et al., 2001]. It connects the Chelungpu and Shuangtung thrusts 
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(figure 2) and it probably plays the role of a transfer fault. Structural measurements [e.g. Yue et al. (2005) and 

this study] and seismic investigations [Wang et al., 2002] document the subsurface geometry of these 

structures. In the case of the seismic profile of Wang et al. [2002] further north along the Choushui river 

(figure 3b), it can be noted that the velocities used for depth conversion are ~ 10-20% higher than those 

determined for the same formations in the region [Chen, 1978; Sato et al., 1970], so that the depth of the 

imaged Chelungpu decollement coincided with that of the epicenter of the ChiChi earthquake [Yue et al., 

2005]. The seismic line shows that the Chelungpu and Chushiang faults can be interpreted as fault-bend folds 

[e.g. Suppe, 1983], meaning that thickness and length of the beds are preserved during deformation, and that 

internal deformation needed to accommodate the ramp geometry occurs by flexural bed-parallel slip. The 

Chushiang and Chelungpu faults appear to splay from a common ramp at ~3000 m depth (figure 3b).  A kink 

along this ramp is clearly imaged on the seismic profile where the faults connect at depth. It indicates that 

both the Chelungpu and the Chushiang faults are active, because such observed change in dip is expected if 

the slip transferred along the common ramp at depth is partitioned between the two faults emerging at the 

surface (figure 3b) [e.g. Simoes et al., subm.]. Recent activity on the Chushiang fault is also clearly supported 

by the presence of a fault scarp disrupting a fill terrace along the Dungpuna River (figure 6). Further north 

along section X-X’ of figure 2, this fault no longer exists and the decollement at depth merges at the surface 

as the single Chelungpu fault (figure 3a). Along the Choushui river, the branch that links to the surface trace 

of the Chelungpu fault shows a dip angle of ~21°E on Wang et al. [2002]’s seismic profile, when corrected for 

the high velocities used for depth conversion. This fault dip differs from the greater dips observed for the 

layers on the seismic profile and retrieved from structural measurements along the Choushui river [Yue et al., 

2005]. In contrast, in our study area we measured apparent dip angles of ~20°E from sighting measurements 

on the hanging-wall of the Chelungpu fault (figure 5). In any case, the kink observed along the ramp at depth 

clearly indicates where the two faults merging at the surface connect (figure 3b), so that, along with the 

surface fault trace, it provides a strong constraint on the Chelungpu fault dip. Structural measurements 
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performed along the Choushui and Dungpuna rivers within the hanging wall of the Chushiang fault are 

consistent with the ~50°E dip observed on the seismic profile.  

Strike-and-dip measurements along the Dungpuna river (figure 5) support a structural model across our field 

area (figure 7b), which is consistent with the seismic profile of Wang et al. [2002] along the Choushui river. 

For the purpose of our subsequent analysis, we have chosen a N118E section, perpendicular to the Chushiang 

fault and to the strike directions measured in the field (figures 5 and 7). Because the main strike of the 

Chelungpu thrust sheet is about north-south, projection of the 21°E dip deduced from Wang et al. [2002]’s 

east-west profile yields a 18°E dip angle along our cross-section. In addition, the 3°E regional dip of the 

Changhua decollement projected on the N118E section has been retrieved from Hung and Suppe [2002]’s 

seismic investigations south of the Pakuashan anticline (figure 2). The obtained cross-section is used below to 

analyze the deformation of a geomorphic marker along the Dungpuna river.  

 

3. Field survey of the terraces observed along the Dungpuna river. 

 

3.1 Description of the terraces. 

 

The Dungpuna river is a tributary to the Choushui river in the southernmost portion of the ChiChi earthquake 

surface rupture (figures 2), and flows northwestward almost parallel to the direction of tectonic transport in 

Taiwan (figure 5). Imbricate fluvial terraces are present in the hanging wall of the Chelungpu fault in the 

western part of our study area (figures 5 and 7a). We were not able to find neither good outcrops exposing the 

geometry of the strath surfaces buried under these different terrace treads nor any datable material for age 

constraints. Upstream, the river has incised into a thick non-sorted fill deposit (figures 5 and 7a). These 

sediments are typical of high-energy regimes alike debris flows: within the coarse-grained matrix, angular 

debris with varying diameters, often larger than 1 m, are common (figure 8a). The coarse stratification 
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suggests however that it was emplaced as a result of several episodes of deposition. Such thick deposit is not 

found regionally so that it is not necessarily linked to any particular climatic event. Its origin probably relates 

to local landslides, which are revealed further upstream by scars in the morphology of the valley walls (figure 

2). In the downstream area, this fill deposit has been disrupted by the Chushiang fault and clearly reveals a 

~30-50 m high fault scarp (figure 6). 

Deposition of this thick pile of sediments buried the former riverbed and preserved it as an erosive contact 

between the folded bedrock and the deposit (figure 8b). This strath surface is presently visible along the steep 

valley walls in the westernmost portion of the hanging wall of the Chushiang thrust, revealing the amount of 

river incision that has occurred since this former riverbed was abandoned (figures 7a). Upstream, this strath 

disappears beneath the active channel, and in this area the river still cuts into the fill deposit (figures 5, 7a and 

8a); this coincides with where bedrock dip angles become gentler (figure 7b). This strath surface can not be 

observed directly downstream from the Chushiang fault scarp, in the hanging wall of the Chelungpu thrust. 

However, its location may still be constrained since it most certainly lies above the highest point where 

bedrock can be observed on the valley walls in this area, and beneath the top of the fill deposit. Immediately 

downstream from the Chelungpu fault trace, the former riverbed that lies in continuity with the surveyed 

strath surface has been buried under alluvial sediments (figure 5). The profile of the deformed and incised 

strath terrace may be to first order compared to the presently active channel to retrieve incremental shortening 

on the Chelungpu and Chushiang faults [Lave and Avouac, 2000] (figure 7a). The top of the deposit should 

not be used as a geomorphic marker of deformation since the initial geometry of such high-energy sediments 

may not be straightforward to assess (figure 7a).  Also, it is possible that this geometry is in fact time-

transgressive [Weldon (1986), cited in Bull (1991)]. Indeed, deposition of such thick pile of sediments could 

have occurred over a certain time lag. 

 

3.2. Retrieving the geometry of the deformed strath terrace and of the fill deposit.  
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To retrieve the position of the strath terrace surface, we used a ©Trimble 5700 RTK (Real-Time Kinematics) 

GPS system, equipped with a Trimble® ZephyrTM antenna (for more information on the system: 

http://trl.trimble.com/docushare/dsweb/Get/Document-6785/5700WPertkE.pdf and 

http://trl.trimble.com/docushare/dsweb/Get/Document-140051/Spec_Sheet_-_R7_-_English.pdf). RTK GPS 

system involves two units that are kept in radio contact during the whole experiment: a fixed base whose 

position is determined precisely initially, and a mobile rover. The position of the surveyed objects is then 

measured with the rover unit relative to the base station. These differential measurements allow for very 

precise positions (usually of the order of 1 cm) since most of the errors inherent to GPS signals are corrected, 

except for multipath and receiver errors. Moreover, all measurements are tied to a unique consistent reference 

frame, which is most appropriate for our study. Since the strath surface along the steep valley walls could not 

be approached easily, a geodetic laser range distance-meter (Advantage system from LaserAtlanta®: for more 

information see http://www.laseratlanta.com/advantage.htm) equipped with a magnetic compass was coupled 

to our RTK system to keep all measurements within this same reference frame. Distance, inclination and 

azimuth of the laser to the target were provided by the instrument and allowed calculation of the precise 

geometry of the deformed layers (Appendix A).  

The strath terrace can only be observed in the hanging wall of the Chushiang fault. Within the footwall of this 

fault, bedrock is observed as high as 16.6 m above the present riverbed, providing a lower limit of the position 

of the strath in this area. Field measurements are combined with a 40 m-resolution digital elevation model 

(DEM), provided that measured altitudes are corrected to match those prescribed on the DEM for surveyed 

ground control points (ex: top of the deposit, present active river channel). The required vertical correction is 

found to be 36.5 ± 2.5 m. The top of the fill deposit and of the frontal imbricate fluvial terraces are directly 

extracted from the DEM (figures 5 and 7a). The altitudes of the strath terrace and of the top of the deposit are 

presented relative to the present active riverbed (figure 7a). Indeed, this latter may provide a good 

approximation for the initial geometry of the deformed strath level, although changes in river gradient and 
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sinuosity may have occurred since the strath was abandoned [Lave and Avouac, 2000]. For the purpose of our 

analysis, data are projected onto a N118E transect perpendicular to the structures (figures 5 and 7). 

To calculate uncertainties, we use a conservative approach detailed in Appendix A. 

 

3.3. Age of abandonment of the strath terrace. 

 

Several radiocarbon samples within the fill deposit in the hanging wall of both the Chushiang and Chelungpu 

fault have been collected by Chen et al. [2002] and indicate ages of ~11,500 to 11,700 yr BP (non-calibrated 

ages). The location of these samples and their stratigraphic position relative to the strath terrace is however 

not clearly reported. Chen et al. [2003] described a sample collected for radiocarbon dating close to the 

surface of the deposit on the hanging wall of the Chelungpu thrust. It yielded, before calibration, an age of 

11,590 ± 60 yr BP (table 1). This age places an upper bound on the time of riverbed abandonment represented 

by the strath surface. 

We collected charcoal samples from silty layers within a colluvial wedge lying less than 4 m below the 

erosive base of the fill deposit in the footwall of the Chushiang fault (figure 9). The wedge developed at the 

front of the fault and has been subsequently covered by the younger high-energy deposit. The basal erosive 

surface observed at this outcrop does not cut into the bedrock and stands ~30 m above the strath surveyed at 

this location. It thus most probably does not represent the former riverbed, but instead the contact between the 

fill deposit and the valley walls. The 4 samples collected yield calibrated ages from ~11,000 to ~20,000 cal yr 

(calibration after Stuiver et al. [1998]; table 1), but their respective stratigraphic positions do not appear to be 

consistent with the measured ages (figure 9). We interpret the older ages to be from inherited charcoals. 

Youngest ages are thus most probably the closest to initiation of deposition of the fill deposit above the 

colluvial wedge. These values, which represent an upper limit to the age of strath abandonment, are close to 

the age retrieved by Chen et al. [2003] from the surface of the deposit and to those measured within the 

sediments by Chen et al. [2002], suggesting that deposition most probably occurred very rapidly although 
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thicknesses of over 100 m are observed (figures 7a and 8a). Because of the similarity of all ages with those 

obtained in this study, we date riverbed abandonment represented by the strath terrace to the youngest age 

obtained from the colluvial wedge of figure 9: 11,231 to 11,850 cal yr, as given from sample 0606-A. An 

average value of 11,540 ± 309 cal yr, spanning the whole time interval covered for this sample, is 

subsequently used (table 1). 

 

4. Slip rates on the Chelungpu and Chushiang faults. 

 

4.1. Approach. 

 

Terraces may prove useful geomorphic markers in analyzing the kinematics of active structures if their initial 

geometries can be assessed. The initial depositional surface of a terrace tread may be particularly complex and 

not straightforward to define, particularly in the case of a high-energy deposit. Indeed, the sediment fill in our 

case study shows strong lateral variations in thickness, illustrated by varying differences in altitude between 

the top of the deposit and the basal strath surface (figure 7a). Therefore, although the dome-shaped geometry 

of the top of the deposit likely records some incremental shortening associated with the Chushiang thrust, 

most of this observed pattern is the direct consequence of an initial lens-shaped depositional surface above the 

riverbed (figures 7a). Our case study emphasizes the problems that might be encountered by using terrace 

treads for morphotectonic analyses of active structures. The strath surface proves more reliable because it can 

be compared directly to the present active riverbed as a first approximation [Lave and Avouac, 2000]. The 

present pattern of river incision revealed by the strath can be translated into incremental uplift after 

corrections for base level, river gradient and sinuosity changes [Lave and Avouac, 2000]. These latter two 

parameters may not be easily assessed however. Alternatively, such corrections can be avoided by using the 



 11

pattern of differential incremental uplift within the hanging wall [Thompson et al., 2002], or else by the 

vertical throw across a fault scarp. This latter option is subsequently considered. 

A model of deformation is needed to retrieve incremental shortening across active structures from the pattern 

of uplift. The cross-section of our study area suggests that the Chelungpu and Chushiang thrusts are mature 

faults (figure 7b), so that a simple model of fault-bend folding applies here. In this case, the uplift u relative to 

the footwall, due to a displacement d along the thrust fault, is simply expressed by: 

u = d. sin(α)                                                                   (1) 

where α is the apparent dip angle in the direction of thrusting [e.g. Lave and Avouac, 2000]. The footwall may 

be subsiding or rising, so that absolute uplift is only retrieved after correction for the vertical motion of the 

footwall. The proposed cross-section of figure 7b allows for defining precisely the expected contribution of 

the different structures at depth to the recorded tectonic uplift (figure 10). The age constraints on strath 

abandonment subsequently allow translation of the retrieved total incremental displacement d into a 

shortening rate across the active structures. The method used to quantify errors on our estimated shortening 

rates is detailed in Appendix A. 

 

4.2. Shortening rates across the Chushiang fault. 

 

We consider here the scarp of the Chushiang fault. In particular, to quantify the vertical throw of the strath 

terrace across the fault, the position of this geomorphic marker on both sides of the thrust has to be known. 

The strath has been surveyed in the hanging wall of the Chushiang fault (figure 7a) but additional constraints 

on its location within the footwall are needed. This position can be assessed provided that the thickness of the 

fill deposit capping the strath terrace is known at this location. For this purpose, we first calculate the 

thickness of the sediments within the hanging wall of the Chushiang fault, by substracting the altitude of the 

strath from the altitude of the top of the deposit. This estimate is only possible where the strath has been 

surveyed, between distances ~4700 and ~7000 m along our section (figure 7a).  The retrieved thickness varies 
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laterally, and can be fitted by a simple second degree polynome. This pattern is then extrapolated further 

downstream to the immediate footwall of the Chushiang thrust where field observations indicate that the strath 

lies at least 16.6 m above the present riverbed. This approach suggests a thickness of 25 m at this location. 

With the top of the deposit at 61 m, the strath would be about 36 m above the present riverbed, consistent with 

field observations. However, the initial geometry of the fill may be more complex than the polynome derived 

above. In particular, the slope of the top of the deposit in the footwall of the Chushiang fault is significantly 

gentler than in the hanging wall (figure 7a), so that the previous interpolation may largely underestimate the 

sediment thickness in the footwall block. By accounting for the minimum and maximum possible values of 

16.6 and 36 m respectively, we therefore consider that the strath lies at an average altitude of 26 +/- 10 m 

above the present channel in this area.  

By comparing this position to the altitude of the strath in the hanging wall of the Chushiang fault, we estimate 

the vertical throw to 28 ± 11 m (figure 7a). Taking into account the average 56°E dip observed at the front of 

the thrust from our field measurements, we get from equation (1) that 34 ± 18 m of horizontal displacement 

have been accommodated across the Chushiang thrust since the strath was abandoned. This in turn yields a 

shortening rate V2b (figure 10) of 2.9 ± 1.6 mm/yr across this structure. 

 

4.3. Shortening rates on the Chelungpu thrust. 

 

The strath surface lies 26 ± 10 m above the present river in the hanging wall of the Chelungpu thrust, 

immediately west of the Chushiang fault (figure 7a). Because the dip of the Chelungpu fault does not vary 

significantly along our section (figures 3b and 7b), the amount of tectonic uplift of the strath is expected to be 

constant over the whole hanging wall of this thrust. Since the strath terrace was abandoned due to 

entrenchment of the Dungpuna river into the uplifted hanging wall of the Chelungpu fault, sedimentation has 

buried its downstream continuation on the footwall side of the Chelungpu fault. To determine the vertical 

throw across the fault scarp, we therefore need to estimate how much sedimentation has occurred over the last 
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11,540 ± 309 cal yr (sed in figure 10). As reported by Simoes and Avouac [in press], Holocene subsidence 

rates of 2 to 3 mm/yr have been documented in the Coastal Plain west of the Pakuashan anticline [Lai and 

Hsieh, 2003], and are consistent with sedimentation rates offshore central Taiwan over a similar time scale 

[Lee et al., 1993]. The effective sedimentation rate of the footwall of the Chelungpu fault just west of the fault 

scarp is probably less because of uplift related to slip along the Changhua fault and eventually also because of 

shortening and thickening of the sedimentary units forming the hanging wall of this most frontal fault (figure 

2). The kinematic analysis of Simoes et al. [subm.] and available seismic profiles [Hung and Suppe, 2002; 

Wang et al., 2002] across the southern Pakuashan anticline suggest that the backlimb of the fold does not 

extend as far east as the footwall of the Chelungpu thrust immediately west of the fault scarp. Therefore, uplift 

due to thickening on the hanging wall of the Changhua fault is probably negligible in this area. The 

kinematics of the growing Pakuashan anticline has been relatively well constrained from the subsurface 

structure, the surface expression of the fold and from dated growth strata and indicates that the Changhua fault 

absorbs 15.9 ± 1.4 mm/yr of shortening [Simoes et al., subm.]. Although the footwall of the Chelungpu fault 

closest to the fault scarp has not seen any uplift related to the growth of the Pakuashan fold, it is still uplifted 

by a small amount relative to the footwall of the Changhua fault due to the 3°E regional dip of the frontal 

blind thrust (figure 10). This uplift is estimated to 0.8 ± 0.1 mm/yr based on the slip rate and on the dip of the 

fault. Vertical motion of the footwall of the Chelungpu fault since terrace abandonment (sed in figure 10) has 

therefore been essentially driven by sedimentation of the foreland basin and we may therefore assume an 

effective sedimentation rate of 1.7 ± 0.9 mm/yr. This estimate is consistent with the probable position within 

the immediate footwall of the Chelungpu fault of the 31,950 BP yr old terrace dated by [Ota et al., 2002] 

(figure 2), constrained to a depth of ~53 m (figure 7a) as predicted from the kinematic model of Simoes et al. 

[subm.] corrected for the uplift related to the regional dip of the Changhua fault. Given the uncertainties on 

the proposed effective sedimentation rate, our result is consistent with available constraints from wells and 

boreholes. Indeed, a sedimentation rate of 2 to 3 mm/yr over the last ~1.5 kyr has been retrieved from the C3 

borehole [Streig et al., subm.] near Nantou (figure 2). In addition, over a time period of ~30 kyr, more 
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comparable to that of our data, a lower rate of 0.91 mm/yr has been proposed from a well near Wufeng, 40 to 

50 km north of our investigated area [Chen et al., subm.]. Therefore, based on our analysis, we estimate that 

the 11,540 ± 309 cal yr old riverbed is now located 20 ± 12 m below the present channel within the footwall 

of the Chelungpu thrust fault (figure 7a). Compared to our field observations in the hanging wall of the fault, 

this result yields a vertical throw of 46 ± 17 m across the fault scarp since the strath was abandoned. Because 

the Chelungpu thrust dips by 18°E in the study area (figures 7b and 10), equation (1) indicates that 149 ± 55 

m of shortening have been absorbed on the fault during the past ~11,540 years, which in turn yields a 

shortening rate of 12.9 ± 4.8 mm/yr. 

 

4.4 Uplift due to slip on the Chelungpu and Chushiang faults, and river incision. 

 

Vertical displacements of the 11,540 +/- 309 cal old strath surface across the scarps of the Chelungpu and 

Chushiang faults allow for constraining the slip rates on these structures to 12.9 ± 4.8 and 2.9 ± 1.6 mm/yr 

respectively. As suggested by the seismic profile of Wang et al. [2002] as well as our structural model (figures 

7b and 10), these two thrusts merge at depth into the same decollement level, which consequently 

accommodates a total shortening of 15.8 ± 5.1 mm/yr. We checked that these results and the partitioning of 

the 15.8 ± 5.1 mm/yr between the two shallower splay faults are consistent with the proposed subsurface 

geometry (inset in figure 10).  

Finally, although river incision may not be directly related to tectonic uplift because some of the incision may 

have been associated with eventual hydrological changes [Lave and Avouac, 2000; Poisson and Avouac, 

2004], we compare here the profile of the strath terrace to the pattern of vertical displacements predicted from 

the structural model of figure 10 and using the shortening rates proposed above. The overall good fit supports 

our previous results (figure 11). However, the structural model overestimates river incision at the distances of 

~5,000 to 5,500 m along our section, possibly due to hydrological adjustments related to the confluence with a 

nearby tributary (figure 5). The non-tectonic contribution to the incision signal is probably not significant in 
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our study area (figure 11). In addition, we reconstructed the initial geometry of the fill deposit on either side 

of the Chushiang fault by correcting for the estimated vertical throw across this fault (figure 12). A complex 

geometry, similar to the expected lens shape (figure 7a), is obtained and supports our results. Also, this 

reconstruction clearly indicates that thicknesses predicted on the footwall of the Chushiang fault by simply 

extrapolating those observed further upstream can be significantly underestimated. Altogether, these results 

put credence to the idea that strath terraces may be used as accurate geomorphic markers for such 

morphotectonic investigations, provided that river adjustments in terms of gradient or sinuosity may be 

quantified. 

 

5. Discussion 

 

5.1. Partitioning of shortening across the foothills and implications for seismic hazards. 

 

From the morphotectonic analysis of the strath terrace preserved along the Dungpuna river, to the south of the 

Mw=7.6 ChiChi earthquake rupture (figure 2), we estimate shortening rates of 12.9 ± 4.8 and 2.9 ± 1.6 mm/yr 

on the Chelungpu and Chushiang faults respectively.  These two structures root at depth into a single ramp 

and decollement (figures 7b and 10) that should in turn accommodate a total shortening rate of 15.8 ± 5.1 

mm/yr. North of our field area, at the approximate latitude of the ChiChi earthquake epicenter, the Chushiang 

thrust disappears (figures 2, 3a and 13). In this northern region of the WF of central Taiwan, the shortening 

rate absorbed by this structure is therefore probably transferred to other faults such as the Chelungpu or the 

Shuangtung faults.  Transfer of slip to the Changhua fault is expected to be negligible because the kinematics 

of shortening of the Pakuashan anticline has been shown to be consistent from south to north [Simoes et al., 

subm.]. These findings yield some crucial insights into assessing how shortening is partitioned and 

accommodated across the Taiwanese range.  
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Based on the analysis of the foreland basin, Simoes and Avouac [in press] recently proposed that the long-

term shortening rate across the range west of the suture zone (figure 1) is of ~42 mm/yr. In addition, they 

showed from balanced cross-sections across the WF that this shortening has been mostly (if not totally) 

absorbed across the foothills (figure 4). If the ~15.9 mm/yr slip rate recently estimated on the Changhua fault 

[Simoes et al., subm.] is combined with our results on the Chelungpu and Chushiang thrusts, a total of ~32 

mm/yr appears to be accommodated on the most frontal structures. This in turn leaves ~10 mm/yr to be 

accommodated on more internal faults such as the Shuangtung fault, which is most probably presently active 

[Sung et al., 2000]. Whether or not all slip on these most frontal thrust faults is released seismically, in 

earthquakes such as the Mw=7.6 ChiChi event, is an issue of major importance in evaluating the seismic 

hazards in west-central Taiwan. Some insights can be obtained by estimating the potency rate (integral of the 

slip rate over the fault area) of the active structures present in this area, and by comparing it to the potency 

(integral of the coseismic slip over the ruptured fault area) during the 1999 ChiChi earthquake. Here we 

assume that slip rates and fault geometries do not vary significantly laterally within the study area, over a 

length of about 80 km from the southern to the northern ends of the ChiChi surface rupture. The potency rate 

P in 2-D across the foothills can be calculated from the product of the long-term slip rates vi and the downdip 

width Wi for each fault i: 

∑= ii vWP .                                                                                       (1) 

The widths Wi are taken over the whole length of each locked fault, from its surface trace to the tip of the 

aseismically creeping deep decollement (figure 4c). The edge of the elastic dislocation inferred by Dominguez 

et al. [2003] to model interseismic deformation in west central Taiwan provides an estimate of the location of 

the downdip limit of the locked fault zone (figure 4c). The geometry of the shallower structures is constrained 

from balanced-cross sections along section X-X’ [Yue et al., 2005] (figure 3a). Two cases are considered, 

whether slip on the Chushiang fault is transferred to the Chelungpu fault (P1) or else to the Shuangtung fault 

(P2) in this area (table 2). Based on the geometry proposed in figure 4 and on the several estimates of the slip 

rates on the major faults (Table 2), we get for both cases a similar value of ~3.4 .10-3 m2/s for P. If all the 
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strain accumulated across the foothills is released during major seismic events with the same potency as the 

1999 ChiChi earthquake, we can then estimate the recurrence time of such events over the 80km long stretch 

of the WF considered here. The geodetic moment Mo of an earthquake is calculated as follows: 

Mo = W. L. d. μ                                                                           (2) 

where W, L and d are respectively the downdip width and length of the ruptured area and the total 

displacement, and μ is the shear modulus. In the case of the ChiChi earthquake Mo has been estimated to 2.9 

.1020 N.m assuming a shear modulus of 3.3 x 1010 N/m2 [Dominguez et al., 2003]. The released 2-D potency, 

PChiChi, can then be calculated as 1.1 x 105 m2 from: 

PChiChi = Mo / (L. μ)                                                                         (3)             

By dividing PChiChi by the rate P determined above for the foothills, we get a recurrence time of ~62 to 64 

years for events similar to the ChiChi earthquake. Historic seismicity reveals only one additional major 

seismic event in the area over the last 2 centuries, the 1848 M~7.1 Changhua earthquake [Tsai, 1985]. This 

means that over the last two centuries the historic earthquakes have released a potency that is less than 50% of 

what would be required, on average over the long term, if all the locked faults were to slip only during large 

earthquakes. Given that seismicity in a given area generally obeys the Gutenberg-Richter law, with a b value 

of about 1, the contribution of earthquakes significantly smaller then the ChiChi earthquake (with a moment 

of less than say 7.0) is negligible.  Aseismic slip could take up the fraction of the potency rate not expressed in 

seismicity. The negligible geodetic strain observed during the decade prior to the ChiChi earthquake [Yu et 

al., 1997] (figure 3a) suggests that this aseismic deformation would need to be episodic, with the possibility 

that a significant fraction could occur as afterslip during postseismic relaxation. Afterslip was indeed observed 

following the ChiChi earthquake [Hsu et al., 2002], and found to have occurred over the portion of the fault 

that was previously locked. Afterslip contributed an additional potency of only about 10% of the co-seismic 

potency over the three years following the earthquake. Given the decay rate of afterslip this mode of aseismic 

slip can explain only a fraction of the potency deficit. Also it has been observed that the ChiChi earthquake 

triggered some transient aseismic slip on the Changhua fault beneath Pakuashan [Pathier et al., 2003]. But the 
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corresponding potency is negligible compared to that of the main shock. On the other hand these inferences 

rely on only two historic earthquakes which may not be representative of the whole seismic cycle in the WF. 

Another explanation might well be that the historical period has coincided with a period of seismic quiescence 

with a deficit of earthquakes compared to the long-term average.  Paleoseismic investigations are required to 

address this question, in particular across the Shuangtung fault which has not yet been specifically studied. In 

any case the faults of the WF are a major source of seismic hazard in this heavily populated area. 

 

5.2. Implications for the Chelungpu fault in terms of along-strike variations in slip rate and 

seismic cycle. 

 

Further north of our investigated area, the slip rate absorbed on the Chushiang thrust is expected to be 

transferred to the Chelungpu fault or to the Shuangtung fault (figures 2 and 13), implying lateral north-south 

variations in the kinematics of these latter structures. Such transfer of slip from the Chushiang fault to the 

other thrusts towards the north may be sharp or progressive. Further along-strike morphotectonic 

investigations of the thrust faults in the WF of central Taiwan are needed to clarify the proposed lateral 

variations in the partitioning of shortening across this region. In the case of the Chelungpu fault, the slip rate 

is therefore of 12.9 ± 4.8 mm/yr to the south and may be of up to 15.8 ± 5.1 mm/yr towards the north. 

Although the slip distribution during the ChiChi earthquake may not be representative of the behavior of the 

Chelungpu fault over a longer term, some insights into the seismic cycle of this thrust might be gained by 

comparing the coseismic slip distribution to the active structures in the WF, and to their partitioning of 

shortening. Indeed, sharp gradients in the horizontal coseismic slip distribution were observed in the southern 

area from the analysis of SPOT images [Dominguez et al., 2003], along a ~N125E trending line initiating in 

the vicinity of the epicenter (figure 13). This was interpreted as an eventual tear fault that has not yet reached 

the surface, and Dominguez et al. [2003] proposed that the earthquake originated in some complexity of the 

Chelungpu fault. Interestingly, the epicenter of the ChiChi earthquake lies in the area where, in map view, the 
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Chushiang thrust connects to the Shuangtung fault and disappears to the north (figure 13). Complexities in the 

coseismic slip distribution can thus be linked to the geometry of the structures along strike, and may be 

correlated to the lateral partitioning of long-term shortening. Also, the ~N125E trending gradient in coseismic 

displacements, sub-parallel to the ~N118E direction of tectonic transport in Taiwan and of slip during the 

ChiChi earthquake [Dominguez et al., 2003; Yu et al., 2001], coincides with where the Chushiang fault is 

expected to transfer its long-term shortening to the other faults of the WF (figure 13). Because this region 

coincides with an increase in the horizontal coseismic slip along the Chelungpu fault, it can be proposed that 

slip on the Chushiang fault is actually taken up to the north mostly on the Chelungpu thrust rather than on the 

Shuangtung fault. However, how this coseismic pattern is valid over several seismic cycles and how it 

compares to the longer-term partitioning of slip is not straightforward. Also, such scenario implies the 

existence over the long-term of a major left-lateral tear fault at the northern termination of the Chushiang fault 

(figure 13), which is not revealed in the morphology (figure 2).  

 

5.3. Comparison with the previously proposed short- and long-term slip rates on the Chelungpu 

fault, and implications. 

 

The proposed slip rates on the Chelungpu thrust of 12.9 ± 4.8 mm/yr to the south and of up to 15.8 ± 5.1 

mm/yr to the north are much higher than the 4.97-8.5 mm/yr values previously inferred over the last 1,900 

years from trenches across the surface trace of the fault [e.g. Chen et al., 2004c; Wang, 2005]. However, as 

reported by Chen et al. [2004b], surface ruptures observed by trenching show a very complex pattern, with 

distributed shear at the surface break of the fault, so that displacements may not be straightforward to retrieve. 

Off-fault deformation within the thrust sheet can not account for the discrepancy between the two rates, 

because this deformation has been seen to be minor during the ChiChi earthquake [Dominguez et al., 2003]. 

Also, although aseismic creep and minor seismic events contribute to accommodating shortening, they may 

not be recorded at the fault scarp and thus not have any recognizable signature for paleoseismic investigations. 
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Finally, the seismic behavior of the Chelungpu fault may not be linear and steady in time, in which case the 

lower paleoseismic results indicate a period of seismic quiescence. These two different results deal with 

different time scales and may not be properly comparable.  

Based on sedimentologic arguments, Chen et al. [2000] proposed that activity on the Chelungpu fault began 

by 0.7 Ma ago. When compared to the finite shortening of ~18.5-24.1 km retrieved from balanced cross-

sections [e.g. Yue et al., 2005] corrected for erosion of the thrust sheet [Simoes and Avouac, in press], this 

implies a long-term shortening rate of ~26.4 to 34.4 mm/yr across the Chelungpu fault [Simoes and Avouac, 

in press], higher than the maximum ~15.8 mm/yr proposed in this study over ~11,540 years. As suggested 

above, the behavior of the fault might not have been steady since it initiated, and slip rates may have slowed 

down over time. One possible explanation for the inconsistency between these rates taken at two different 

time scales is that some rearrangements occurred within the WF ~65 kyr ago, when shortening was transferred 

westward to the incipient Changhua fault [Simoes et al., subm.]. Such westward transfer of deformation may 

have lowered the slip rate on the Chelungpu fault. This scenario is supported by the fact that the present slip 

rates on the two most frontal faults add together to the ~30 mm/yr total long-term shortening rate across the 

Chelungpu thrust sheet. Investigating deformed geomorphic markers older than 65 kyr in this frontal region 

would be most useful to test this hypothesis. 

 

5.4. Using strath terraces for morphotectonic investigations. 

 

Apart from these contributions to better constraining the kinematics of shortening across Taiwan, as well as 

the seismic hazards in the highly populated area of the WF, our study of the Dungpuna strath terrace also 

illustrates the importance of defining precisely the geomorphic marker to use for such morphotectonic 

investigations. [Weldon (1986), cited in Bull (1991)] showed that large fluvial deposits might be time–

transgressive, so that their tops may not represent a deformed isochronous geomorphic marker. In addition to 

that, our investigations of the deposit in the Dungpuna valley indicate that the initial geometry of the top of 
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the deposit may be too complex to be precisely retrieved (figure 12). In turn, this precludes extracting the 

finite incision from the present observations from this geometry. The strath surface appears to be a more 

reliable geomorphic marker because it might be compared to the present active channel, provided that non-

tectonic contributions to river incision (changes in river gradient and sinuosity) may be quantified [e.g. Lave 

and Avouac, 2000]. The proposed slip rates on the Chushiang and Chelungpu faults have been retrieved from 

vertical throws across fault scarps and are thus independent of such hydrological changes. 

 

6. Conclusion 

 

The morphotectonic study of the deformed strath terrace that was abandoned 11,540 +/- 309 cal yr ago along 

the Dungpuna river, west-central Taiwan, allowed us for estimating the slip rates on the Chelungpu and 

Chushiang faults to 12.9 ± 4.8 and 2.9 ± 1.6 mm/yr respectively. In our study area, these two structures are 

splay faults branching at depth to a common decollement that consequently absorbs 15.8 ± 5.1 mm/yr of 

shortening. Lateral variations in the partitioning of shortening across the WF are expected because of the 

varying geometries of the thrust sheets. To the north of our study area, the slip rate on the Chelungpu fault 

may be possibly as high as the 15.8 ± 5.1 mm/yr derived for the decollement common to the two splay faults 

investigated here. Further studies are still needed to assess in more detail these probable lateral variations, but 

the proposed scenario correlates well with the distribution of horizontal coseismic slip during the ChiChi 

earthquake. In addition, they bring clues for better assessing seismic hazards in this highly populated area of 

Taiwan. Indeed, some of the shortening absorbed across this western frontal part of the range could be 

released by aseismic creep, postseismic deformation or else small to intermediate earthquakes rather than by 

only major seismic events such as the Mw=7.6 ChiChi.  
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Tables 

Sample Material Lab # Method Conventional 

age (BP) 

Calibrated 

age (cal. 

years) 

0606-A charcoal Lyon-

2247(Poz) 

AMS 11,500 +/- 

100 

11,540 +/- 

309 

[11,231 to 

11,850] 

DPN-1 charcoal Lyon-

2248(Poz) 

AMS 17,250 +/- 

180 

18,580 +/- 

410 

[18,170 to 

18,990] 

DPN-2 charcoal Lyon-

2249(Poz) 

AMS 20,160 +/- 

270 

- 

DPN-3 charcoal Lyon-

2250(Poz) 

AMS 11,780 +/- 

100 

11,821 +/- 

285 

[11,536 to 

12,107]  

[Chen et al., 2003] 

** 

Wood NTU-

3739 

Conv. 11,590 +/- 60 13,585 +/- 

265** 

 

Table 1: Radiocarbon samples collected from the site depicted in figure 9. Calibration was performed after 

Stuiver et al. [1998]. For each sample, the range of calibrated ages acceptable is given, as well as the average 

value that can be proposed from this range.  
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**Also reported is the sample from Chen et al. [2003], which was collected from the top of the deposit, within 

the hanging wall of the Chelungpu thrust. It was dated using conventional methods. The calibration is in this 

case after Stuiver and Becker [1993]. 

 

  Changhua  Chelungpu Shuangtung  

 W 52.6 km 41.7 km 26.3 km  

Case 1 v 16 mm/yr 16 mm/yr 10 mm/yr P1 = 3.4. 10-3 m2/s 

Case 2 v 16 mm/yr 13 mm/yr 13 mm/yr P2 = 3.3. 10-3 m2/s 

 

Table 2: Values of downdip width, W, and slip rate, v, of the different faults used to estimate the seismic 

potency rate P across the foothills of west central Taiwan. W was evaluated based on the balanced cross-

section of figure 3. Slip rates on the Changhua and Chelungpu faults are derived from Simoes et al. [subm.] 

and this study respectively. Two cases are here investigated, whether slip on the Chushiang fault is transferred 

to the Chelungpu fault (case 1) or to the Shuangtung fault (case 2) north of our study area. These shortening 

rates add up to the total ~42mm/yr proposed by Simoes and Avouac [in press].  

 

Figures 

 

Figure 1: Geodynamical context of Taiwan. The convergence rate of ~90 mm/yr between the Philippine Sea 

Plate and the South China Block is taken after the GPS-derived plate kinematic model of Sella et al. [2002]. 

The Longitudinal Valley (LV) marks the suture between the 2 plates, and the Central Range (CR) of Taiwan 

develops westward of this valley. Also indicated are the epicenter and the ~80km long surface rupture of the 

September 1999 Mw=7.6 ChiChi earthquake [Ma et al., 1999].  The inset locates the area represented on 

figure 2 within the Western Foothills (WF) of central Taiwan. 
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Figure 2: Map view of the structures within the WF of central Taiwan. The epicenter and focal mechanism of 

the ChiChi earthquake (from the Central Weather Bureau) are shown. The Changhua blind thrust, which is 

related to the Pakuashan fault-tip fold [Simoes et al., subm.], marks the range front in this region.  The 

position of the terrace, dated by Ota et al. [2002] to ~31 ka BP and tilted by the Changhua fault, is also shown 

(asterisk). Gray circle locates the C3 borehole near the city of Nantou [Streig et al., subm.]; the well analysed 

by Chen et al. [subm.] in the Wufeng area is further north than the region represented here. Our study focuses 

on the Chelungpu and Chushiang faults in the area indicated by the box locating figure 5 (see text for further 

details). The upper right inset provides the geological map of the area. 

 

Figure 3: Geometry of the structures along two transects across the region shown in figure 2.  

A- To the north of the WF of central Taiwan, structures along the cross-section X-X’ (figure 2) show 

simple subsurface geometries (after Yue et al. [2005]). 

B- Further south, the seismic line of Wang et al. [2002] (not to scale) documents structures in the region 

investigated in this study (figure 2). A kink where the Chelungpu and Chushiang thrusts connect 

indicates that slip on their common ramp at depth is partitioned on these two faults (schematic 

diagram on the inset). Therefore both these structures are presently active. Note that in Wang et al. 

[2002]’s paper the Chushiang fault is named “Tachienshan fault”; we here use the name proposed in 

the revised geological map of Chen et al. [2004a]. 

 

Figure 4: Active structures and cumulated strain across the WF of central Taiwan. 

A.  Interseismic GPS displacements in the WF (circles) relative to the Chinese continental margin (figure 

1), over the 5-6 years prior to the ChiChi earthquake [Yu et al., 1997]. Also shown (dashed line) are 

horizontal displacements predicted at the surface by the elastic dislocation model of Dominguez et al. 

[2003] considering an aseismic creep rate of 40mm/yr on the decollement beneath the CR (B). 
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B. Cross-section across central Taiwan, after Yue et al. [2005] along transect X-X’ (figures 2 and 3a) for 

the foothills region, and after the geometry of the best-fitting creeping deep decollement of Dominguez 

et al. [2003] further east. The shortening rate of ~42mm/yr across the Taiwanese range that is 

transferred to the active faults of the WF is after Simoes and Avouac [in press]. 

C. Simplified geometry of the structures in (B) used to calculate the seismic potency rate across the WF. 

Fault lengths, Wi, are calculated from the fault tip down to the transition from seismic to aseismic slip 

given by the elastic model of Dominguez et al. [2003] (circle). Vi represents slip rate on each fault. For 

simplicity, the transect at the latitude of section X-X’ (B) is here considered rather than a transect 

further south incorporating the Chushiang fault. 

 

Figure 5: Area investigated in our study along the Dungpuna river. The locations where the strath surface was 

surveyed in the field are shown (blue triangles); the strath inferred in the hanging wall of the Chelungpu fault 

is indicated by an open triangle. Upstream from our south-easternmost surveyed point, the strath disappears 

below the present channel (dashed blue line). The top of the fill deposit has been mapped only where its 

morphology could be clearly defined on the shaded DEM. Structural measurements were performed along the 

Dungpuna river valley. All data were projected on the N118E line A-A’ (figure 7). Inset locates the area 

detailed on figure 6.  

 

Figure 6: Chushiang fault scarp. This fault disrupts the fill deposit (figure 5): this is clearly revealed in the 

morphology as illustrated by the shaded DEM (left panel). A topographic profile across the fault scarp 

(section B-B’) is also shown on the right panel. 

 

Figure 7: Structural and morphotectonic analysis of the strath terrace observed along the Dungpuna river. All 

data are shown projected onto line A-A’ (figure 5). 
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A.  Projection of the strath terrace (blue triangles) surveyed in the field and of the top of the fill deposit 

(pink dots) retrieved from the 40 m-DEM (figure 5). Altitudes are shown relative to the present active 

channel. Within the footwall of the Chelungpu fault, the position of the former riverbed in continuity 

with the strath further upstream is here only inferred and has not been observed in the field (see text 

for further details). The inferred position of the terrace dated by Ota et al. [2002] at this location is 

also shown (asterisk). Within the hanging wall of the Chushiang fault, the laterally varying thickness 

of the fill deposit suggests that it had an initial lens-shaped geometry, as illustrated schematically in 

the upper left inset. Location of the charcoal samples dated in this study is indicated (star).  

B. Cross-section across our study area based on structural measurements shown in figure 5. Only locally 

averaged measurements are reported here and have been used to draw structures at depth. The 

Chelungpu (CheF) and Chushiang (ChuF) thrusts appear as splay faults branching onto a common 

decollement, whose total shortening rate, V2, equals the sum of the rates on the two former faults, V2a 

and V2b respectively. 

 

Figure 8: Field pictures of our survey along the Dungpuna river; dark circles indicate people for scale. 

(A) Poorly sorted and coarse sediments of the Dungpuna fill deposit capping the strath terrace. Here the river 

still erodes into the deposit (figure 5). 

(B) Example of outcrop where the strath terrace was surveyed. The strath (dashed line) appears to be an 

erosive contact between the folded bedrock below and the coarse deposit on top. 

 

Figure 9: Schematic illustration of the site where four charcoal samples (0606-A, DPN-1, -2 and -3) were 

collected for radiocarbon dating. Ages and sample characteristics are presented in table 1. These samples were 

retrieved from non-oxidized silt layers containing organic material, within a colluvial wedge at the front of the 

Chushiang fault (figures 5 and 7a).  
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Figure 10:  Model of the tectonic uplift rate u expected along our field transect, based on the cross-section of 

figure 7b. Uplift is relative to the footwall, so that absolute uplift rates will have to account for sedimentation 

in the footwall, sed. Inset: slip rates obtained from our analysis of the strath terrace are compatible with the 

subsurface geometry inferred for the thrust faults. 

 

Figure 11:  Profile of the strath terrace and rock uplift since the strath was abandoned, as predicted by the 

model of figure 10 considering shortening rates of 12.8 and 2.9 mm/yr across the Chelungpu and Chushiang 

faults respectively. Altitudes are given relative to the present riverbed. All structural measurements obtained 

in the field (figure 5) were considered to calculate rock uplift: this explains the scatter of the model pattern. A 

sedimentation rate at the front of the system and a slip rate on the Changhua decollement of 2.5 and 15.9 

mm/yr respectively are assumed to derive the absolute uplift.  

 

Figure 12:  Reconstructed initial lens-shaped geometry of the fill deposit (dots). This geometry is calculated 

by subtracting the altitude of the strath from that of the top of the deposit, and by accounting for the vertical 

throw across the Chushiang fault (figure 10). This calculation is only performed where the strath terrace has 

been clearly identified in the field (figure 7a), and does not extend upstream where the present river still 

incises into the fill. The data gap in the vicinity of the fault scarp is related to the fact the top of the fill was 

not extracted from the DEM in this area (figure 7a) because the scarp has been affected by hillslope processes. 

 

Figure 13:  Horizontal coseismic slip distribution of the ChiChi earthquake retrieved from SPOT images 

[Dominguez et al., 2003], and GPS data [Yu et al., 2001] (white arrows) relative to the undeformed passive 

margin. Displacements from SPOT images range from 0 (blue) to 12 (red) m. The earthquake epicenter (from 

the Central Weather Bureau) coincides with the northern end of the Chushiang splay fault.  Also shown is the 

N125E line representing the sharp northward increase in coseismic displacements noted by Dominguez et al. 
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[2003], which appears close to the N118E projection parallel to the direction of tectonic transport in Taiwan 

of the northward ending of the Chushiang fault (dashed line). 

 

 

Appendix A: Uncertainties on the positions of the strath, and on the calculated slip rates.  

 

Uncertainties on the positions of each point measured by RTK GPS are provided by the system and 

correspond to a 95% confidence level. They are of 1cm+1ppm of the signal RMS in the horizontal, and of 

2cm + 1ppm of the signal RMS in the vertical. In the case of distant targets, errors associated with the laser 

system were added to the RTK position of the laser base by using partial derivatives. Uncertainties on the 

slope distance are of the order of 3 to 5 cm but we use a value of 15 cm in our calculations because field work 

was performed during the wet season. Accuracies of the inclinometer and of the magnetic compass are 0.4 and 

0.3° respectively. Because the laser height was measured by a meter stick, we assume a maximum uncertainty 

of 2.5 mm (half a graduation). Finally, transposing these measurements into the DEM reference frame 

generates an additional vertical error of 2.54 m, derived from the dispersion in the comparison of measured 

anchor points with their altitude on the DEM.  

Uncertainties on horizontal incremental displacements and slip rates were then calculated based on the 

uncertainties on the different parameters and measurements, in quadrature and using partial derivatives. We 

estimate that these uncertainties correspond to a 95% confidence level, although partial derivatives certainly 

overestimate calculated uncertainties. 
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